Skip to main content
Log in

Quantum state transfer between an optomechanical cavity and a diamond nuclear spin ensemble

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We explore an efficient scheme for transferring quantum state between an optomechanical cavity and nuclear spins of nitrogen-vacancy centers in diamond, where quantum information can be efficiently stored (retrieved) into (from) the nuclear spin ensemble assisted by a mechanical resonator in a dispersive regime. Our scheme works for a broad range of cavity frequencies and might have potential applications in employing the nuclear spin ensemble as a memory in quantum information processing. The feasibility of our protocol is analyzed using currently available parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Raimond, J.M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. ÓBrien, J.L.: Optical quantum computing. Science 318, 1567 (2007)

    Article  ADS  Google Scholar 

  3. Ritter, S., et al.: An elementary quantum network of single atoms in optical cavities. Nature 484, 195 (2012)

    Article  ADS  Google Scholar 

  4. Kippenberg, T.J., Vahala, K.J.: Cavity opto-mechanics. Opt. Express 15, 17172 (2007)

    Article  ADS  Google Scholar 

  5. Verhagen, E., Deléglise, S., Weis, S., Schliesser, A., Kippenberg, T.J.: Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63 (2012)

    Article  ADS  Google Scholar 

  6. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)

    Article  ADS  Google Scholar 

  7. Barzanjeh, S., Abdi, M., Milburn, G.J., Tombesi, P., Vitali, D.: Reversible optical-to-microwave quantum interface. Phys. Rev. Lett. 109, 130503 (2012)

    Article  ADS  Google Scholar 

  8. Wang, Y.D., Clerk, A.A., Wang, Y.D., Clerk, A.A.: Using interference for high fidelity quantum state transfer in optomechanics. Phys. Rev. Lett. 108, 153603 (2012)

    Article  ADS  Google Scholar 

  9. Asjad, M., Tombesi, P., Vitali, D.: Quantum phase gate for optical qubits with cavity quantum optomechanics. Opt. Express 23, 7786 (2015)

    Article  ADS  Google Scholar 

  10. Li, J., Haghighi, I.M., Malossi, N., Zippilli, S., Vitali, D.: Generation and detection of large and robust entanglement between two different mechanical resonators in cavity optomechanics. New J. Phys. 17, 103037 (2015)

    Article  ADS  Google Scholar 

  11. Xiang, Z.L., Ashhab, S., You, J.Q., Nori, F.: Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623 (2013)

    Article  ADS  Google Scholar 

  12. Waldherr, G., et al.: Quantum error correction in a solid-state hybrid spin register. Nature 506, 204 (2014)

    Article  ADS  Google Scholar 

  13. Xue, Z.Y., et al.: Robust interface between flying and topological qubits. Sci. Rep. 5, 12233 (2015)

    Article  ADS  Google Scholar 

  14. Singh, S., Jing, H., Wright, E.M., Meystre, P.: Quantum-state transfer between a Bose–Einstein condensate and an optomechanical mirror. Phys. Rev. A 86, 021801(R) (2012)

    Article  ADS  Google Scholar 

  15. Bochmann, J., Vainsencher, A., Awschalom, D.D., Cleland, A.N.: Nanomechanical coupling between microwave and optical photons. Nat. Phys. 9, 712 (2013)

    Article  Google Scholar 

  16. Andrews, R.W., et al.: Bidirectional and efficient conversion between microwave and optical light. Nat. Phys. 10, 321 (2014)

    Article  Google Scholar 

  17. Dutt, M.V.G., et al.: Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312 (2007)

    Article  Google Scholar 

  18. Neumann, P., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nat. Phys. 6, 249 (2010)

    Article  Google Scholar 

  19. Yang, W.L., Yin, Z.Q., Hu, Y., Feng, M., Du, J.F.: High-fidelity quantum memory using nitrogen-vacancy center ensemble for hybrid quantum computation. Phys. Rev. A 84, 010301(R) (2011)

    Article  ADS  Google Scholar 

  20. Grezes, C., et al.: Multimode storage and retrieval of microwave fields in a spin ensemble. Phys. Rev. X 4, 021049 (2014)

    Google Scholar 

  21. Fuchs, G.D., Burkard, G., Klimov, P.V., Awschalom, D.D.: A quantum memory intrinsic to single nitrogen-vacancy centres in diamond. Nat. Phys. 7, 789 (2011)

    Article  Google Scholar 

  22. Cai, J., Retzker, A., Jelezko, F., Plenio, M.B.: A large-scale quantum simulator on a diamond surface at room temperature. Nat. Phys. 9, 168 (2013)

    Article  Google Scholar 

  23. Maurer, P.C., et al.: Room-temperature quantum bit memory exceeding one second. Science 336, 1283 (2012)

    Article  ADS  Google Scholar 

  24. Shim, J.H., Niemeyer, I., Zhang, J., Suter, D.: Room-temperature high-speed nuclear-spin quantum memory in diamond. Phys. Rev. A 87, 012301 (2013)

    Article  ADS  Google Scholar 

  25. Sangouard, N., Simon, C., de Riedmatten, H., Gisin, N.: Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33 (2011)

    Article  ADS  Google Scholar 

  26. Fischer, R., Jarmola, A., Kehayias, P., Budker, D.: Optical polarization of nuclear ensembles in diamond. Phys. Rev. B 87, 125207 (2013)

    Article  ADS  Google Scholar 

  27. Fischer, R., et al.: Bulk nuclear polarization enhanced at room temperature by optical pumping. Phys. Rev. Lett. 111, 057601 (2013)

    Article  ADS  Google Scholar 

  28. Rabl, P., et al.: Strong magnetic coupling between an electronic spin qubit and a mechanical resonator. Phys. Rev. B 79, 041302(R) (2009)

    Article  ADS  Google Scholar 

  29. Xu, Z.Y., Hu, Y.M., Yang, W.L., Feng, M., Du, J.F.: Deterministically entangling distant nitrogen-vacancy centers by a nanomechanical cantilever. Phys. Rev. A 80, 022335 (2009)

    Article  ADS  Google Scholar 

  30. Rabl, P., et al.: A quantum spin transducer based on nanoelectromechanical resonator arrays. Nat. Phys. 6, 602 (2010)

    Article  Google Scholar 

  31. Chang, Y., Sun, C.P.: Analog of the electromagnetically-induced-transparency effect for two nanomechanical or micromechanical resonators coupled to a spin ensemble. Phys. Rev. A 83, 053834 (2011)

    Article  ADS  Google Scholar 

  32. Stannigel, K., Rabl, P., Sørensen, A.S., Lukin, M.D., Zoller, P.: Optomechanical transducers for quantum-information processing. Phys. Rev. A 84, 042341 (2011)

    Article  ADS  Google Scholar 

  33. Kronwald, A., Marquardt, F.: Optomechanically induced transparency in the nonlinear quantum regime. Phys. Rev. Lett. 111, 133601 (2013)

    Article  ADS  Google Scholar 

  34. Song, Z., Zhang, P., Shi, T., Sun, C.P.: Effective boson-spin model for nuclei-ensemble-based universal quantum memory. Phys. Rev. B 71, 205314 (2005)

    Article  ADS  Google Scholar 

  35. Ai, Q., Li, Y., Long, G.L., Sun, C.P.: Creation of entanglement between two electron spins induced by many spin ensemble excitations. Eur. Phys. J. D 48, 293 (2008)

    Article  ADS  Google Scholar 

  36. Tao, M.-J., Hua, M., Ai, Q., Deng, F.-G.: Quantum-information processing on nitrogen-vacancy ensembles with the local resonance assisted by circuit QED. Phys. Rev. A 91, 062325 (2015)

    Article  ADS  Google Scholar 

  37. Xiang, Z.L., Lü, X.Y., Li, T.F., You, J.Q., Nori, F.: Hybrid quantum circuit consisting of a superconducting flux qubit coupled to a spin ensemble and a transmission-line resonator. Phys. Rev. B 87, 144516 (2013)

    Article  ADS  Google Scholar 

  38. Marquardt, F., Chen, J.P., Clerk, A.A., Girvin, S.M.: Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007)

    Article  ADS  Google Scholar 

  39. Poot, M., van der Zant, H.S.J.: Mechanical systems in the quantum regime. Phys. Rep. 511, 273 (2012)

    Article  ADS  Google Scholar 

  40. Liu, Y.C., Xiao, Y.F., Luan, X., Wong, C.W.: Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics. Phys. Rev. Lett. 110, 153606 (2013)

    Article  ADS  Google Scholar 

  41. Gao, M., et al.: Controllable strong coupling between individual spin qubits and a transmission line resonator via nanomechanical resonators. Phys. Lett. A 376, 595 (2012)

    Article  ADS  Google Scholar 

  42. Majer, J., et al.: Coupling superconducting qubits via a cavity bus. Nature 449, 443 (2007)

    Article  ADS  Google Scholar 

  43. Sidles, J.A., et al.: Magnetic resonance force microscopy. Rev. Mod. Phys. 67, 249 (1995)

    Article  ADS  Google Scholar 

  44. Rugar, D., Yannoni, C.S., Sidles, J.A.: Mechanical detection of magnetic resonance. Nature 360, 563 (1992)

    Article  ADS  Google Scholar 

  45. Sandner, K., Ritsch, H., Amsuss, R., Koller, C., Nobauer, T., Putz, S., Schmiedmayer, J., Majer, J.: Strong magnetic coupling of an inhomogeneous nitrogen-vacancy ensemble to a cavity. Phys. Rev. A 85, 053806 (2012)

    Article  ADS  Google Scholar 

  46. Feng, Z.B.: Robust quantum state transfer between a Cooper-pair box and diamond nitrogen-vacancy centers. Phys. Rev. A 91, 032307 (2015)

    Article  ADS  Google Scholar 

  47. Hertzberg, J.B., et al.: Back-action-evading measurements of nanomechanical motion. Nat. Phys. 6, 213 (2009)

    Article  Google Scholar 

  48. Blais, A., Huang, R.S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J.: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004)

    Article  ADS  Google Scholar 

  49. Verdú, J., et al.: Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity. Phys. Rev. Lett. 103, 043603 (2009)

    Article  ADS  Google Scholar 

  50. Palomaki, T.A., Harlow, J.W., Teufel, J.D., Simmonds, R.W., Lehnert, K.W.: Coherent state transfer between itinerant microwave fields and a mechanical oscillator. Nature 495, 210 (2013)

    Article  ADS  Google Scholar 

  51. Duan, L.M., Monroe, C.: Colloquium: quantum networks with trapped ions. Rev. Mod. Phys. 82, 1209 (2010)

    Article  ADS  Google Scholar 

  52. Kimble, H.J.: The quantum internet. Nature 453, 1023 (2008)

    Article  ADS  Google Scholar 

  53. Saito, S., et al.: Towards realizing a quantum memory for a superconducting qubit: storage and retrieval of quantum states. Phys. Rev. Lett. 111, 107008 (2013)

    Article  ADS  Google Scholar 

  54. Stanwix, P.L., et al.: Coherence of nitrogen-vacancy electronic spin ensembles in diamond. Phys. Rev. B 82, 201201(R) (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Mang Feng for fruitful discussions and thank Dr. Jian-Qi Zhang and Dr. Wan-Li Yang for many helps. This work is supported by the National Natural Science Foundation of China under Grant No. 11304267, by China Postdoctoral Science Foundation under Grant No. 2014M552121, by the Program for HASTIT under Grant No. 13HASTIT049, and by the Prominent Young Backbone Talents of Xuchang University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Bo Feng.

Appendices

Appendix 1: The phonon decoherence effect on the QST

During the above-mentioned QST, the dissipation of photons and phonons reduces the transfer fidelity. The decoherence is from the decays of the cavity field and the mechanical mode, whose effects on the system can be addressed numerically by solving the master equation. In a displaced frame, we analyze the coherent evolutions \(\left| 10g\right\rangle _\mathrm{crs}\leftrightarrow \left| 01g\right\rangle _\mathrm{crs}\leftrightarrow \left| 00e\right\rangle _\mathrm{crs}\) for a resonant case of \(\bar{\omega } _\mathrm{c}=\omega _\mathrm{r}=\omega _\mathrm{s}\) realized by tuning \(\bar{\omega }_\mathrm{c}\) and \( \omega _\mathrm{s}\). Here, the mechanical mode is supposed to be initially cooled down to the vibrational ground state \(\left| 0\right\rangle _\mathrm{r}\) by current techniques of sideband cooling in the optomechanical setup [38]. The reduced density matrix \(\rho \) is governed by the Lindblad master equation [9, 40],

$$\begin{aligned} \dot{\rho }=\frac{i}{\hbar }[\rho ,H_{t}]+\kappa D[a]\rho +\gamma (n_\mathrm{th}+1)D[b]\rho +\gamma n_\mathrm{th}D[b^{\dag }]\rho , \end{aligned}$$
(19)

where \(D[z]\rho =(2z\rho z^{\dag }-z^{\dag }z\rho -\rho z^{\dag }z)/2\) with \( z=a,b\), the decay rates \(\kappa \) and \(\gamma \) are regarding the photon and the phonon, respectively, and \(n_\mathrm{th}\) stands for the thermal phonon number of the environment. In the present optomechanical system, the photon decay is dominant over the phonon decay (\(\kappa \gg \gamma \)) [39]. For simplicity and also for clarity of description, we may neglect the decoherence effect induced by the phonons and reduce the master equation as:

$$\begin{aligned} \dot{\rho }=i[\rho ,H_{t}]+\kappa (2a\rho a^{\dag }-a^{\dag }a\rho -\rho a^{\dag }a)/2, \end{aligned}$$
(20)

which works in the main text after considering the virtual excitation of the resonator. We have numerically compared the cases with and without the phonon decoherence in Fig. 3 in order to justify the decoherence effect associated with the phonon decay.

In the considered system, we have the effective coupling strength \(\bar{ \lambda }_\mathrm{rc}=\bar{\lambda }_\mathrm{rs}\) (\(\simeq 2\pi \times 152.88\) kHz) and the resonator frequency \(\omega _\mathrm{r}/2\pi =0.76\) MHz. As in Refs. [9, 40], the decay rates are \(\kappa =1.0\times 10^{-2}\omega _\mathrm{r}\) and \( \gamma =10^{-5}\omega _\mathrm{r}\). The thermal phonon number of the environment is chosen as \(n_\mathrm{th}=493\). For the identical initial state \(\left| 10g\right\rangle _\mathrm{crs}\), the corresponding time evolution of the occupation probability of \(\left| 00e\right\rangle _\mathrm{crs}\) can be obtained by numerically solving Eqs. (19) and (20). The populations \( P_{00e}^{(1)}\) and \(P_{00e}^{(2)}\), with and without the phonon decay effect, respectively, are given in Fig. 3a, b, respectively. To quantitatively assess the influence from the phonon, we plot the dependence of \(\Delta P_{00e}\) (\(=P_{00e}^{(2)}-P_{00e}^{(1)}\)) on time t; see Fig. 3c.

The results indicate that omission of the phonon decay works only for short-time state transfer. For example, we have \(\Delta P_{00e}=7.65\,\%\) at \(t=2.43\) \(\upmu \)s. For a long-time implementation, \(\Delta P_{00e}\) would be 36.67 % at \(t\simeq 16.2\) \(\upmu \)s, implying a significant effect from the phonon decay. As such, exploring a more effective way to adiabatically removing the thermal phonon is necessary, and improving the cavity quality is also highly expected for future implementation of our scheme.

Appendix 2: The effect of inhomogeneous couplings on the transfer fidelity

As mentioned before, the ring-like spin distribution of NSE has a thickness of 60 nm along the z axis, making the MFG felt by the individual spins of NSE inhomogeneous slightly. The relevant coupling strengths \(\lambda _\mathrm{rs}^{(k)}\) of the individual spins to the z direction MFG could be different from each other. In this case, the collective coupling strength is generally given by \(\bar{\lambda }_\mathrm{rs}^{(R)}=\sqrt{\sum _{k}(\lambda _\mathrm{rs}^{(k)})^{2}}\), with \(k=1,2, \ldots , N\) [45]. In particular, when adopting the approximation of identical couplings, \(\lambda _\mathrm{rs}^{(k)}=\lambda _\mathrm{rs}\) , the collective coupling strength takes the form \(\bar{\lambda }_\mathrm{rs}^{(R)}= \sqrt{N}\lambda _\mathrm{rs}\) \((=\bar{\lambda }_\mathrm{rs})\).

We are concerned with the effects of different coupling strengths on the transfer fidelities [46]. For a state transfer, say \(\left| 1g\right\rangle _\mathrm{cs}\longleftrightarrow \left| 0e\right\rangle _\mathrm{cs}\), the fidelities are assumed to be F and \(F^{(R)}\) for the different strengths of \(\bar{\lambda }_\mathrm{rs}\) and \(\bar{\lambda }_\mathrm{rs}^{(R)}\), respectively. Now, we consider two differences \(\Delta F=F^{(R)}-F\) and \( \Delta \bar{\lambda }_\mathrm{rs}=\bar{\lambda }_\mathrm{rs}^{(R)}-\bar{\lambda }_\mathrm{rs}\). Here, \(\bar{\lambda }_\mathrm{rs}\) is fixed, as utilized in the before calculations; we thus obtain a deterministic fidelity F for other chosen parameters (with decay rate \(\kappa /2\pi =1.0\times 10^{-2}\omega _\mathrm{r}\)). Assuming that \( \bar{\lambda }_\mathrm{rs}^{(R)}\) has a deviation of \(\Delta \bar{\lambda }_\mathrm{rs}\) from \(\bar{\lambda }_\mathrm{rs}\), we focus on the fidelity change \(\Delta F\) versus \(\Delta \bar{\lambda }_\mathrm{rs}\), characterizing the effect of \(\Delta \bar{ \lambda }_\mathrm{rs}\) on the state transfer of interest. By numerically solving Eqs. (14) and (15), the dependence of \(\Delta F\) on \(\Delta \bar{\lambda }_\mathrm{rs}\) can be obtained quantitatively. It is found that \(\Delta F\) increases slowly with \(\Delta \bar{\lambda }_\mathrm{rs}\). When \(\Delta \bar{ \lambda }_\mathrm{rs}/2\pi =5\) and 10 kHz, the differences are \(\Delta F=0.21\) and 0.87 %, respectively. Even for a larger deviation of \( \Delta \bar{\lambda }_\mathrm{rs}/2\pi =20\) kHz, the fidelity change is \(\Delta F=3.52\,\%\). These results indicate that the deviation \(\Delta \bar{\lambda } _\mathrm{rs}\) does not affect the transfer fidelity typically.

Note that the MFG along the z axis is position-dependent, and it will be reduced with increase in the distance between the individual spin and the magnetic tip. In our consideration, we have selected the average MFG at the middle position of the NSE (i.e., one half of thickness). Compared with the average strength \(\lambda _\mathrm{rs}\), the individual coupling \(\lambda _\mathrm{rs}^{(k)}\) will be increased (reduced) for the spins distributing on the left (right) half of the NSE. As a result, the total impact of two opposite changes on the realistic coupling \(\bar{\lambda }_\mathrm{rs}^{(R)}\) could be canceled out partially, which makes the above approximation of \(\bar{\lambda } _\mathrm{rs}^{(R)}\simeq \bar{\lambda }_\mathrm{rs}\) possible physically in our protocol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, ZB., Wang, HL. & Yan, RY. Quantum state transfer between an optomechanical cavity and a diamond nuclear spin ensemble. Quantum Inf Process 15, 3151–3167 (2016). https://doi.org/10.1007/s11128-016-1350-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1350-8

Keywords

Navigation