Skip to main content
Log in

Entanglement of the quantum system with spin–spin coupling created by optical excitation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we investigate the quantum entanglement characteristics of the system consisting an intermediary molecule with an optically excited triplet and two bilateral spin-1/2 nucleons. The two nuclear spins both couple to the excitation state which is caused by a pulsed laser. We study the linear entropy and entangling power of the evolution operator acting on the product state of the system. We deduce the entangling power when the energy state has a uniform distribution, and we find that the entanglement of the system shows a certain stability. In this paper, several standard expressions are analyzed and calculated in detail, including the detailed solution for the quantum entropy as well as the calculation of the linear entropy and entangling power, which are based on this solution. In comparing the linear entropy and entangling power, we find that the latter is the average of the former. Subsequently, we present an alternative derivation of the evolution operator and find that the result is consistent with that of the traditional method. When the evolution operator acts on the average of the product states, the entangling power of the evolution operator presents a distinct changing trend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Peres, A.: Quantum Theory: Concepts and Methods, pp. 123–129. Kluwer Academic Publishers, New York (2002)

    Book  Google Scholar 

  2. Zanardi, P.: Entanglement of quantum evolutions. Phys. Rev. A 63(4), 040304(R) (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Gauger, E.M., Rohde, P.P., Stoneham, A.M., Lovett, B.W.: Strategies for entangling remote spins with unequal coupling to an optically active mediator. New J. Phys 10(7), 073027 (2008)

    Article  ADS  Google Scholar 

  4. Sandberg, M., Knill, E., Kapit, E., Vissers, M.R., Pappas, D.P.: Efficient quantum state transfer in an engineered chain of quantum bits. Quantum Inf. Process. 15(3), 1213–1224 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400(1818), 97–117 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A 439(1907), 553–558 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature (London) 404(6775), 247–255 (2000)

    Article  ADS  MATH  Google Scholar 

  8. Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57(1), 120–126 (1998)

    Article  ADS  Google Scholar 

  9. Wang, X.G., Zanardi, P.: Quantum entanglement of unitary operators on bipartite systems. Phys. Rev. A 66(4), 044303 (2002)

    Article  ADS  Google Scholar 

  10. Chefles, A.: Entangling capacity and distinguishability of two-qubit unitary operators. Phys. Rev. A 72(4), 042332 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  11. Dür, W., Vidal, G., Cirac, J.I.: Optimal conversion of nonlocal unitary operations. Phys. Rev. Lett. 89(5), 057901 (2002)

    Article  ADS  Google Scholar 

  12. Dodd, J.L., Nielsen, M.A., Bremner, M.J., Thew, R.T.: Universal quantum computation and simulation using any entangling Hamiltonian and local unitaries. Phys. Rev. A 65(4), 040301(R) (2002)

    Article  ADS  MathSciNet  Google Scholar 

  13. Liu, J., Wang, W., Zhang, C., Niu, Q., Li, B.: Fidelity for the quantum evolution of a Bose–Einstein condensate. Phys. Rev. A 72(6), 063623 (2005)

    Article  ADS  Google Scholar 

  14. Allaire, G., Arnold, A., Degond, P., Hou, T.Y.: Quantum Transport, pp. 45–109. Springer, Berlin (2008)

    Book  Google Scholar 

  15. Hartmann, M.J., Reuter, M.E., Plenio, M.B.: Excitation and entanglement transfer versus spectral gap. New J. Phys. 8(6), 94 (2006)

    Article  ADS  MATH  Google Scholar 

  16. Liang, M.L., Yuan, B., Zhang, J.N.: Complete entanglement transfer between light and qubits. Opt. Commun. 283(1), 203–208 (2010)

    Article  ADS  Google Scholar 

  17. López, C.E., Romero, G., Retamal, J.C.: Dynamics of entanglement transfer through multipartite dissipative systems. Phys. Rev. A 81(6), 062114 (2010)

    Article  ADS  Google Scholar 

  18. Bougouffa, S., Ficek, Z.: Entanglement transfer between bipartite systems. Phys. Scr. 2012(T147), 014005 (2012)

    Article  Google Scholar 

  19. Paternostro, M., Son, W., Kim, M.S.: Complete conditions for entanglement transfer. Phys. Rev. Lett. 92(19), 197901 (2004)

    Article  ADS  Google Scholar 

  20. Schaffry, M., Lovett, B.W., Gauger, E.M.: Creating nuclear spin entanglement using an optical degree of freedom. Phys. Rev. A 84(3), 032332 (2011)

    Article  ADS  Google Scholar 

  21. Schaffry, M., Filidou, V., Karlen, S.D., Gauger, E.M., Benjamin, S.C., Anderson, H.L., Ardavan, A., Briggs, G.A.D., Maeda, K., Henbest, K.B., Giustino, F., Morton, J.J.L., Lovett, B.W.: Entangling remote nuclear spins linked by a chromophore. Phys. Rev. Lett. 104(20), 200501 (2010)

    Article  ADS  Google Scholar 

  22. Schweiger, A., Jeschke, G.: Principles of Pulse Electron Paramagnetic Resonance, pp. 1–34. Oxford University Press, New York (2001)

    Google Scholar 

  23. Bortolus, M., Prato, M., van Tol, J., Maniero, A.L.: Time-resolved EPR study of fullerene C60 adducts at 240 GHz. Chem. Phys. Lett. 398(1–2), 228–234 (2004)

    Article  ADS  Google Scholar 

  24. Kulik, L., Lubitz, W.: Electron-nuclear double resonance. Photosynth. Res. 102(2), 391–401 (2009)

    Article  Google Scholar 

  25. Zanardi, P., Zalka, C., Faoro, L.: Entangling power of quantum evolutions. Phys. Rev. A 62(3), 030301(R) (2001)

    Article  MathSciNet  Google Scholar 

  26. Schmidt, E.: On the theory of linear and non-linear integral equations Chapter I Development of random functions in specific systems. Math. Ann. 63(4), 433–476 (1907)

    Article  MathSciNet  Google Scholar 

  27. Ladd, T.D., Maryenko, D., Yamamoto, Y.: Coherence time of decoupled nuclear spins in silicon. Phys. Rev. B 71(1), 014401 (2005)

    Article  ADS  Google Scholar 

  28. Steger, M., Saeedi, K., Thewalt, M.L.W., Morton, J.J.L., Riemann, H., Abrosimov, N.V., Becker, P., Pohl, H.-J.: Quantuminformation storage for over 180 s using donor spins in a 28Si “semiconductor vacuum”. Science 336, 1280–1283 (2012)

    Article  ADS  Google Scholar 

  29. Morton, J.J.L., Tyryshkin, A.M., Brown, R.M., Shankar, S., Lovett, B.W., Ardavan, A., Schenkel, T., Haller, E.E., Ager, J.W., Lyon, S.A.: Solid-state quantum memory using the \(^{31}\text{ P }\) nuclear spin. Nature 455, 1085–1088 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author thanks Professor Fei Xue for his guidance and help. The author also thanks Professor Fei Xue and High Magnetic Field Laboratory(CAS) as well as University of Science and Technology of China for providing scientific research environment and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenghua Fu.

Appendix

Appendix

The eigenvalues and eigenstates of the system are calculated in detail. Moreover, a transformation matrix is introduced to derive the effective Hamiltonian, which can be used to analyze the quantum characteristics of the entire system and determine the quantum entanglement of the energy eigenstates. When the Zeeman splitting energy of the electron is far greater than those of the nucleons as well as the interaction between the intermedium and the nucleons, the eigenvalue problem of the system can be studied using degenerate perturbation theory. The Hamiltonian of the system has been expressed above in Eq. 2:

$$\begin{aligned} H_{sym}= & {} -\,\omega _{n}S_{z,n}+\omega _{e}S_{z,e}-\omega _{n}S_{z,n^{\prime }} \nonumber \\&+A\left( \mathbf S _{n}\cdot \mathbf S _{e}+\mathbf S _{n^{\prime }}\cdot \mathbf S _{e}\right) +DS_{z,e}^{2}. \end{aligned}$$

And, under the assumption of Eq. 3, the electronic Zeeman splitting is much than the interaction between the nucleon and the electron, the terms \(A\left( \mathbf S _{n}\cdot \mathbf S _{e}+\mathbf S _{n^{\prime }}\cdot \mathbf S _{e}\right) \) can be treated as the perturbation term.

The eigenvalues and eigenstates of the Hamiltonian of the system can be obtained as follows:

$$\begin{aligned} E_{1}= & {} A+\omega _{e}-\omega _{n}+D, \nonumber \\ E_{2}= & {} \omega _{e}+D, \nonumber \\ E_{3}= & {} \omega _{e}+D+\frac{A^{2}}{\omega _{e}+\omega _{n}+D}, \nonumber \\ E_{4}= & {} \omega _{e}-A+\omega _{n}+D+\frac{A^{2}}{\omega _{e}+\omega _{n}+D}, \nonumber \\ E_{5}= & {} -\omega _{n}-\frac{A^{2}}{\omega _{e}+\omega _{n}+D}, \nonumber \\ E_{6}= & {} 0, \nonumber \\ E_{7}= & {} \frac{2A^{2}D}{\omega _{e}^{2}+2\omega _{e}\omega _{n}+\omega _{n}^{2} -D^{2}}, \nonumber \\ E_{8}= & {} \omega _{n}+\frac{A^{2}}{\omega _{e}+\omega _{n}-D}, \nonumber \\ E_{9}= & {} D-\omega _{e}-\omega _{n}-A-\frac{A^{2}}{\omega _{e}+\omega _{n}-D}, \nonumber \\ E_{10}= & {} D-\omega _{e}, \nonumber \\ E_{11}= & {} D-\omega _{e}-\frac{A^{2}}{\omega _{e}+\omega _{n}-D}, \nonumber \\ E_{12}= & {} A-\omega _{e}+\omega _{n}+D. \end{aligned}$$
(38)

The orthonormalized energy eigenstates corresponding to these energy eigenvalues are as shown by the following expressions:

$$\begin{aligned} \left| 1\right\rangle= & {} g_{1}, \nonumber \\ \left| 2\right\rangle= & {} \frac{1}{\sqrt{2}}\left( g_{2}-g_{3}\right) , \nonumber \\ \left| 3\right\rangle= & {} c_{1}\left( \frac{1}{\sqrt{2}}\left( g_{2}+g_{3}\right) +\frac{A}{\omega _{e}+\omega _{n}+D}g_{5}\right) , \nonumber \\ \left| 4\right\rangle= & {} c_{1}\left( g_{4}+\frac{1}{\sqrt{2}}\frac{A}{ \omega _{e}+\omega _{n}+D}\left( g_{6}+g_{7}\right) \right) , \nonumber \\ \left| 5\right\rangle= & {} c_{1}\left( g_{5}-\frac{1}{\sqrt{2}}\frac{A}{ \omega _{e}+\omega _{n}+D}\left( g_{2}+g_{3}\right) \right) , \nonumber \\ \left| 6\right\rangle= & {} \frac{1}{\sqrt{2}}\left( g_{6}-g_{7}\right) , \nonumber \\ \left| 7\right\rangle= & {} c_{2}\left( \frac{1}{\sqrt{2}}\left( g_{6}+g_{7}\right) -\frac{A}{\omega _{e}+\omega _{n}+D}g_{4}+\frac{A}{\omega _{e} +\omega _{n}-D}g_{9}\right) , \nonumber \\ \left| 8\right\rangle= & {} c_{3}\left( g_{8}+\frac{1}{\sqrt{2}}\frac{A}{ \omega _{e}+\omega _{n}-D}\left( g_{10}+g_{11}\right) \right) , \nonumber \\ \left| 9\right\rangle= & {} c_{3}\left( g_{9}-\frac{1}{\sqrt{2}}\frac{A}{ \omega _{e}+\omega _{n}-D}\left( g_{6}+g_{7}\right) \right) , \nonumber \\ \left| 10\right\rangle= & {} \frac{1}{\sqrt{2}}\left( g_{10}-g_{11}\right) , \nonumber \\ \left| 11\right\rangle= & {} c_{3}\left( \frac{1}{\sqrt{2}}\left( g_{10}+g_{11}\right) -\frac{A}{\omega _{e}+\omega _{n}-D}g_{8}\right) , \nonumber \\ \left| 12\right\rangle= & {} g_{12}. \end{aligned}$$
(39)

Here, the \({g_{i},i=1,2,\ldots ,12,}\) form the natural basis (defined as \(\left| T_{j}n_{1}n_{2}\right\rangle \), where \(j=1/0/+, T_{-}=\left( \begin{array}{c} 1 \\ 0 \\ 0 \\ \end{array} \right) , T_{0}=\left( \begin{array}{c} 0 \\ 1 \\ 0 \\ \end{array} \right) , T_{+}=\left( \begin{array}{c} 0 \\ 0 \\ 1 \\ \end{array} \right) , n_{1/2}= \left( \begin{array}{c} 1 \\ 0 \\ \end{array} \right) , \left( \begin{array}{c} 0 \\ 1 \\ \end{array} \right) \)) of the action space of the Hamiltonian operators. These eigenstates are orthonormal. And

$$\begin{aligned} c_{1}= & {} \frac{\omega _{e}+\omega _{n}+D}{\sqrt{\left( \omega _{e}+\omega _{n}+D \right) ^{2}+A^{2}}}, \nonumber \\ c_{2}= & {} \frac{\left( \omega _{e}+\omega _{n}-D\right) \left( \omega _{e}+\omega _{n}+D\right) }{\sqrt{A^{2}\left( \left( \omega _{e}+\omega _{n}-D\right) ^{2}+\left( \omega _{e}+\omega _{n}+D\right) ^{2}\right) +\left( \omega _{e}+\omega _{n}-D\right) ^{2}\left( \omega _{e}+\omega _{n}+D\right) ^{2}}}, \nonumber \\ c_{3}= & {} \frac{\omega _{e}+\omega _{n}-D}{\sqrt{\left( \omega _{e}+\omega _{n}-D\right) ^{2}+A^{2}}}. \end{aligned}$$
(40)

The Hamiltonian of this system is complex. We set an transformation matrix \({\varvec{V}}=(V_{i,j}), i,j=1,2,\ldots ,12\) to obtain a simple and regular form for the Hamiltonian, where the matrix elements \(V_{ij}\) are as follows:

$$\begin{aligned} V_{1,1}= & {} V_{12,12}=1, \end{aligned}$$
(41)
$$\begin{aligned} V_{2,2}= & {} -V_{3,2}=V_{10,10}=-V_{11,10}=V_{6,6}=-V_{7,6}=\frac{1}{\sqrt{2}}, \end{aligned}$$
(42)
$$\begin{aligned} V_{2,3}= & {} V_{3,3}=\frac{1}{\sqrt{2}}V_{4,4}=\frac{1}{\sqrt{2}}V_{5,5}=\frac{ \omega _{e}+\omega _{n}+D}{\sqrt{2}\sqrt{\left( \omega _{e}+\omega _{n}+D\right) ^ {2}+A^{2}}}, \end{aligned}$$
(43)
$$\begin{aligned} V_{6,4}= & {} V_{7,4}=-V_{2,5}=-V_{3,5}=\frac{1}{\sqrt{2}}V_{5,3}=\frac{A}{\sqrt{2} \sqrt{\left( \omega _{e}+\omega _{n}+D\right) ^{2}+A^{2}}}, \end{aligned}$$
(44)
$$\begin{aligned} V_{4,7}= & {} -\frac{A\left( \omega _{e}+\omega _{n}-D\right) }{\sqrt{A^{2}\left( \left( \omega _{e}+\omega _{n}+D\right) ^{2}+\left( \omega _{e}+\omega _{n}-D\right) ^{2} \right) +\left( \omega _{e}+\omega _{n}-D\right) ^{2}\left( \omega _{e}+\omega _{n}+D\right) ^{2}}}, \end{aligned}$$
(45)
$$\begin{aligned} V_{6,7}= & {} V_{7,7}=\frac{\left( \omega _{e}+\omega _{n}-D\right) \left( \omega _{e}+\omega _{n}+D\right) }{\sqrt{2}\sqrt{A^{2}\left( \left( \omega _{e}+\omega _{n}+D\right) ^{2}+\left( \omega _{e}+\omega _{n}-D\right) ^{2}\right) +\left( \omega _{e}+\omega _{n}-D\right) ^{2}\left( \omega _{e}+\omega _{n}+D\right) ^{2}}},\nonumber \\ \end{aligned}$$
(46)
$$\begin{aligned} V_{9,7}= & {} \frac{A\left( \omega _{e}+\omega _{n}+D\right) }{\sqrt{A^{2}\left( \left( \omega _{e}+\omega _{n}+D\right) ^{2}+\left( \omega _{e}+\omega _{n}-D\right) ^{2} \right) +\left( \omega _{e}+\omega _{n}-D\right) ^{2}\left( \omega _{e}+\omega _{n}+D\right) ^{2}}}, \end{aligned}$$
(47)
$$\begin{aligned} V_{10,8}= & {} V_{11,8}=-V_{6,9}=-V_{7,9}=-\frac{1}{\sqrt{2}}V_{8,11}=\frac{A}{ \sqrt{2}\sqrt{\left( \omega _{e}+\omega _{n}-D\right) ^{2}+A^{2}}}, \end{aligned}$$
(48)
$$\begin{aligned} V_{10,11}= & {} V_{11,11}=\frac{1}{\sqrt{2}}V_{8,8}=\frac{1}{\sqrt{2}}V_{9,9}= \frac{\omega _{e}+\omega _{n}-D}{\sqrt{2}\sqrt{\left( \omega _{e}+\omega _{n}-D\right) ^{2}+A^{2}}}. \end{aligned}$$
(49)

Aside from the matrix elements given above, all other matrix elements are zero. The effective Hamiltonian of the system can be written as

$$\begin{aligned} {\varvec{H}}_{sym, eff,-}= & {} \left( \begin{array}{cccc} H_{11,-} &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad H_{22,-} &{}\quad H_{23,-} &{}\quad 0 \\ 0 &{}\quad H_{32,-} &{}\quad H_{33,-} &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{} \quad H_{44,-} \end{array} \right) , \end{aligned}$$
(50)
$$\begin{aligned} {\varvec{H}}_{sym, eff,0}= & {} \left( \begin{array}{cccc} H_{11,0} &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad H_{22,0} &{}\quad H_{23,0} &{}\quad 0 \\ 0 &{}\quad H_{32,0} &{}\quad H_{33,0} &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad H_{44,0} \end{array} \right) , \end{aligned}$$
(51)
$$\begin{aligned} {\varvec{H}}_{sym, eff,+}= & {} \left( \begin{array}{cccc} H_{11,+} &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad H_{22,+} &{}\quad H_{23,+} &{}\quad 0 \\ 0 &{}\quad H_{32,+} &{}v H_{33,+} &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad H_{44,+} \end{array} \right) . \end{aligned}$$
(52)

where the matrix elements that appear in the matrices above are as follows:

$$\begin{aligned} H_{11,-}= & {} A+\omega _{e}-\omega _{n}+D, \nonumber \\ H_{22,-}= & {} H_{33,-}=\omega _{e}+D+\frac{1}{2}\frac{A^{2}}{ \omega _{e}+\omega _{n}+D}, \nonumber \\ H_{23,-}= & {} H_{32,-}=-\frac{1}{2}\frac{A^{2}}{\omega _{e}+\omega _{n}+D}, \nonumber \\ H_{44,-}= & {} \omega _{e}-A+\omega _{n}+D+\frac{A^{2}}{\omega _{e}+\omega _{n}+D}; \nonumber \\ H_{11,0}= & {} -\omega _{n}-\frac{A^{2}}{\omega _{e}+\omega _{n}+D}, \nonumber \\ H_{22,0}= & {} H_{33,0}=A^{2}\frac{D}{\omega _{e}^{2}+2\omega _{e}\omega _{n}+ \omega _{n}^{2}-D^{2}}, \nonumber \\ H_{23,0}= & {} H_{32,0}=-A^{2}\frac{D}{\omega _{e}^{2}+2\omega _{e}\omega _{n} +\omega _{n}^{2}-D^{2}}, \nonumber \\ H_{44,0}= & {} \omega _{n}+\frac{A^{2}}{\omega _{e}+\omega _{n}-D}; \nonumber \\ H_{11,+}= & {} D-\omega _{e}-\omega _{n}-A-\frac{A^{2}}{\omega _{e}+\omega _{n}-D}, \nonumber \\ H_{22,+}= & {} H_{33,+}=D-\omega _{e}-\frac{1}{2}\frac{A^{2}}{ \omega _{e}+\omega _{n}-D}, \nonumber \\ H_{23,+}= & {} H_{32,+}=\frac{1}{2}\frac{A^{2}}{\omega _{e}+\omega _{n}-D}, \nonumber \\ H_{44,+}= & {} A-\omega _{e}+\omega _{n}+D. \end{aligned}$$
(53)

Where, we use the subscript \(-,0,+\) to describe the three blocks that the effective Hamiltonian is divided into. And using the effective Hamiltonian (Eq. 53), we obtain the corresponding eigenvalus and eigenstates. The eigenvectors obtained are as follows,

$$\begin{aligned} \left| \psi _{1,-/0/+}\right\rangle= & {} \overrightarrow{p_{1}}, \nonumber \\ \left| \psi _{2,-/0/+}\right\rangle= & {} \frac{1}{\sqrt{2}}(\overrightarrow{p_{2}} -\overrightarrow{p_{3}}), \nonumber \\ \left| \psi _{3,-/0/+}\right\rangle= & {} \frac{1}{\sqrt{2}}(\overrightarrow{p_{2}} +\overrightarrow{p_{3}}), \nonumber \\ \left| \psi _{4,-/0/+}\right\rangle= & {} \overrightarrow{p_{4}}. \end{aligned}$$
(54)

Where, the computation bases are \(\overrightarrow{p_1}=\left( \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ \end{array} \right) , \overrightarrow{p_2}=\left( \begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ \end{array} \right) , \overrightarrow{p_3}=\left( \begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ \end{array} \right) , \overrightarrow{p_4}=\left( \begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ \end{array} \right) \). By using the block processing to solve the eigenvalue and eigenstate problem, we can obtain the eigenspectrum of each block. Each block is with a \(4\times 4\) dimension, and there are four eigenvalues and four eigenstates corresponding to each block of the effective Hamiltonian. In the above calculations, we retain the term relating to \(\frac{A}{\omega _{e}+\omega _{n}\pm D}\). If we ignore the terms, that is \(\frac{A}{\omega _{e}+\omega _{n}\pm D}=0\), then the transformation matrix and the effective Hamiltonian are greatly simplified. These effective Hamiltonians expressions can be transformed by a local rotation as follows,

$$\begin{aligned} {\varvec{H}}_{sym, eff,j}^{\prime }={\varvec{U}}_{j}{\varvec{H}}_{sym, eff,j}{\varvec{U}}_{j}^{\dagger }+i{\varvec{U}}_{j}\frac{d{\varvec{U}}_{j}^{\dagger }}{dt}\quad ,\end{aligned}$$
(55)

where \(j=-,0,+\), and

$$\begin{aligned} {\varvec{U}}_{j}(t)=e^{-iS_{z,n}\phi _{j}t}\otimes e^{-iS_{z,n^{\prime }}\phi _{j}t}, \end{aligned}$$
(56)

Here, \(\phi _{-}\), \(\phi _{0}\), and \(\phi _{+}\) are,

$$\begin{aligned} \phi _{-}= & {} -\,\omega _{n}+A-\xi _{-}, \nonumber \\ \phi _{0}= & {} -\,\omega _{n}-\xi _{-}-\xi _{+}, \nonumber \\ \phi _{+}= & {} -\,\omega _{n}-A-\xi _{+}. \end{aligned}$$
(57)

Where, \(\xi _{-}=\frac{1}{2}\frac{A^{2}}{\omega _{e}+\omega _{n}+D}\), \(\xi _{+}=\frac{1}{2}\frac{A^{2}}{\omega _{e}+\omega _{n}-D}\), and \(\xi _{0}=\xi _{+}-\xi _{-}\). In this way, the effective Hamiltonian of the system can be expressed as

$$\begin{aligned} {\varvec{H}}_{sym, eff,j}^{\prime }=2k\left( j\right) \xi _{j}\left( S_{x,n}S_{x,n^{\prime }}+S_{y,n}S_{y,n^{\prime }}\right) \end{aligned}$$
(58)

Where, \(j=-,0,+\), \(k\left( -\right) =-1\), \(k\left( 0\right) =-1\), \(k\left( +\right) =1\). \(S_{x,n/n^{\prime }/e}\) and \(S_{y,n/n^{\prime }/e}\) denote the x and y components of the Pauli spin operators, respectively. Therefore, the effective Hamiltonian that is acting on the subspace of the system indicates an XY-type interaction between the nucleon spins. Overall, the effective Hamiltonian can enable block processing and the interaction between the nucleons is the direct simple Heisenberg XY interaction.

Given the above, firstly, under the assumption of \(\left| \omega _{n}\right| ,\left| D\right| ,A\ll \omega _{e}\), the terms \(A\left( \mathbf S _{n}\cdot \mathbf S _{e}+\mathbf S _{n^{\prime }}\cdot \mathbf S _{e}\right) \) can be treated as the perturbation term, and the degenerate perturbation theory can be employed to determine the eigenvalues and eigenstates of the Hamiltonian of the system. Secondly, we can obtain an effective Hamiltonian \({\varvec{H}}_{sym, eff}\) which can be divided into three subspace blocks \({\varvec{H}}_{sym, eff,j}(j=-,0,+)\) with all matrix elements between the different subspaces neglected for the electronic Zeeman splitting \(\omega _{e}\) is much larger than other parameters. Therefore, the dynamics in each of the subspace is closed and can be described by a \(4 \times 4\) effective Hamiltonian \({\varvec{H}}_{sym, eff,j}(j=-,0,+)\). That is to say, in each block there is a direct Heisenberg XY interaction between the nucleons and the dynamics in each block is closed. For each closed subspace, no loss occurs during the coupling of the two nucleons. Furthermore, nuclear spins have low decoherence rates and long coherence time [27,28,29] which is much longer than the time that the electron is in its optically excited state. The transient optically excited state can be used to handle the fast and controllable generation of the nuclear spin–spin entanglement. Finally, it is worth noting that this method of producing entanglement must be modified when the electronic Zeeman splitting energy is not sufficiently high. When the Zeeman splitting energy is not very high, an optical excitation not only can induce entanglement but also may modulate or interfere with the entanglement, thereby leading to much more complex operation. However, that is worthy of further study in the future.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, C. Entanglement of the quantum system with spin–spin coupling created by optical excitation. Quantum Inf Process 16, 307 (2017). https://doi.org/10.1007/s11128-017-1763-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1763-z

Keywords

Navigation