Skip to main content
Log in

Hilbert–Schmidt quantum coherence in multi-qudit systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Using Bloch’s parametrization for qudits (d-level quantum systems), we write the Hilbert–Schmidt distance (HSD) between two generic n-qudit states as an Euclidean distance between two vectors of observables mean values in \(\mathbb {R}^{\Pi _{s=1}^{n}d_{s}^{2}-1}\), where \(d_{s}\) is the dimension for qudit s. Then, applying the generalized Gell–Mann’s matrices to generate \(\mathrm{SU}(d_{s})\), we use that result to obtain the Hilbert–Schmidt quantum coherence (HSC) of n-qudit systems. As examples, we consider in detail one-qubit, one-qutrit, two-qubit, and two copies of one-qubit states. In this last case, the possibility for controlling local and non-local coherences by tuning local populations is studied, and the contrasting behaviors of HSC, \(l_{1}\)-norm coherence, and relative entropy of coherence in this regard are noticed. We also investigate the decoherent dynamics of these coherence functions under the action of qutrit dephasing and dissipation channels. At last, we analyze the non-monotonicity of HSD under tensor products and report the first instance of a consequence (for coherence quantification) of this kind of property of a quantum distance measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, vol. 3. Addison-Wesley, Boston (1965)

    MATH  Google Scholar 

  2. Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  3. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  4. Ma, J., Yadin, B., Girolami, D., Vedral, V., Gu, M.: Converting coherence to quantum correlations. Phys. Rev. Lett. 116, 160407 (2016)

    Article  ADS  Google Scholar 

  5. Giorda, P., Allegra, M.: Coherence in quantum estimation. arXiv:1611.02519

  6. Chenu, A., Scholes, G.D.: Coherence in energy transfer and photosynthesis. Annu. Rev. Phys. Chem. 66, 69 (2015)

    Article  ADS  Google Scholar 

  7. Uzdin, R.: Coherence-induced reversibility and collective operation of quantum heat machines via coherence recycling. Phys. Rev. Appl. 6, 024004 (2016)

    Article  ADS  Google Scholar 

  8. Hillery, M.: Coherence as a resource in decision problems: The Deutsch–Jozsa algorithm and a variation. Phys. Rev. A 93, 012111 (2016)

    Article  ADS  Google Scholar 

  9. Yuan, X., Liu, K., Xu, Y., Wang, W., Ma, Y., Zhang, F., Yan, Z., Vijay, R., Sun, L., Ma, X.: Experimental quantum randomness processing using superconducting qubits. Phys. Rev. Lett. 117, 010502 (2016)

    Article  ADS  Google Scholar 

  10. Streltsov, A., Chitambar, E., Rana, S., Bera, M.N., Winter, A., Lewenstein, M.: Entanglement and coherence in quantum state merging. Phys. Rev. Lett. 116, 240405 (2016)

    Article  ADS  Google Scholar 

  11. Misra, A., Singh, U., Bhattacharya, S., Pati, A.K.: Energy cost of creating quantum coherence. Phys. Rev. A 93, 052335 (2016)

    Article  ADS  Google Scholar 

  12. Shi, H.-L., Liu, S.-Y., Wang, X.-H., Yang, W.-L., Yang, Z.-Y., Fan, H.: Coherence depletion in the Grover quantum search algorithm. Phys. Rev. A 95, 032307 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  13. Streltsov, A., Adesso, G., Plenio, M.B.: Quantum coherence as a resource. arXiv:1609.02439

  14. Chitambar, E., Gour, G.: Critical examination of incoherent operations and a physically consistent resource theory of quantum coherence. Phys. Rev. Lett. 117, 030401 (2016)

    Article  ADS  Google Scholar 

  15. Marvian, I., Spekkens, R.W.: How to quantify coherence: distinguishing speakable and unspeakable notions. Phys. Rev. A 94, 052324 (2016)

    Article  ADS  Google Scholar 

  16. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 170401 (2014)

    Article  Google Scholar 

  17. Napoli, C., Bromley, T.R., Cianciaruso, M., Piani, M., Johnston, N., Adesso, G.: Robustness of coherence: an operational and observable measure of quantum coherence. Phys. Rev. Lett. 116, 150502 (2016)

    Article  ADS  Google Scholar 

  18. Piani, M., Cianciaruso, M., Bromley, T.R., Napoli, C., Johnston, N., Adesso, G.: Robustness of asymmetry and coherence of quantum states. Phys. Rev. A 93, 042107 (2016)

    Article  ADS  Google Scholar 

  19. Levi, F., Mintert, F.: A quantitative theory of coherent delocalization. New J. Phys. 16, 033007 (2014)

    Article  ADS  Google Scholar 

  20. Pérez-García, D., Wolf, M.M., Petz, D., Ruskai, M.B.: Contractivity of positive and trace-preserving maps under Lp norms. J. Math. Phys. 47, 083506 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Wang, X., Schirmer, S.G.: Contractivity of the Hilbert–Schmidt distance under open-system dynamics. Phys. Rev. A 79, 052326 (2009)

    Article  ADS  Google Scholar 

  22. Dajka, J., Łuczka, J., Hänggi, P.: Distance between quantum states in the presence of initial qubit-environment correlations: a comparative study. Phys. Rev. A 84, 032120 (2011)

    Article  ADS  Google Scholar 

  23. Ozawa, M.: Entanglement measures and the Hilbert–Schmidt distance. Phys. Lett. A 268, 158 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Piani, M.: The problem with the geometric discord. Phys. Rev. A 86, 034101 (2012)

    Article  ADS  Google Scholar 

  25. Dakic, B., Lipp, Y.O., Ma, X., Ringbauer, M., Kropatschek, S., Barz, S., Paterek, T., Vedral, V., Zeilinger, A., Brukner, C., Walther, P.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666 (2012)

    Article  Google Scholar 

  26. Wu, X., Zhou, T.: Geometric discord: a resource for increments of quantum key generation through twirling. Sci. Rep. 5, 13365 (2015)

    Article  ADS  Google Scholar 

  27. Bertlmann, R.A., Narnhofer, H., Thirring, W.: A geometric picture of entanglement and Bell inequalities. Phys. Rev. A 66, 032319 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  28. Bertlmann, R.A., Durstberger, K., Hiesmayr, B.C., Krammer, P.: Optimal entanglement witnesses for qubits and qutrits. Phys. Rev. A 72, 052331 (2005)

    Article  ADS  Google Scholar 

  29. Lee, J., Kim, M.S., Brukner, C.: Operationally invariant measure of the distance between quantum states by complementary measurements. Phys. Rev. Lett. 91, 087902 (2003)

    Article  ADS  Google Scholar 

  30. Tamir, B., Cohen, E.: A Holevo-type bound for a Hilbert Schmidt distance measure. J. Quantum Inf. Sci. 05, 127 (2015)

    Article  Google Scholar 

  31. Dodonov, V.V., Man’ko, O.V., Man’ ko, V.I., Wünsche, A.: Hilbert–Schmidt distance and non-classicality of states in quantum optics. J. Mod. Opt. 47, 633 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Zyczkowski, K., Sommers, H.-J.: Hilbert–Schmidt volume of the set of mixed quantum states. J. Phys. A Math. Gen. 36, 10115 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Popescu, S., Short, A.J., Winter, A.: Entanglement and the foundations of statistical mechanics. Nat. Phys. 2, 754 (2006)

    Article  Google Scholar 

  34. Björk, G., de Guise, H., Klimov, A.B., de la Hoz, P., Sánchez-Soto, L.L.: Classical distinguishability as an operational measure of polarization. Phys. Rev. A 90, 013830 (2014)

    Article  ADS  Google Scholar 

  35. Witte, C., Trucks, M.: A new entanglement measure induced by the Hilbert–Schmidt norm. Phys. Lett. A 257, 14 (1999)

    Article  ADS  Google Scholar 

  36. Verstraete, F., Dehaene, J., De Moor, B.: On the geometry of entangled states. J. Mod. Opt. 49, 1277 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. Maziero, J.: Computing partial transposes and related entanglement functions. Braz. J. Phys. 46, 605 (2016)

    ADS  Google Scholar 

  38. Dakic, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for non-zero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  MATH  Google Scholar 

  39. Li, L., Wang, Q.-W., Shen, S.-Q., Li, M.: Geometric measure of quantum discord with weak measurements. Quantum Inf. Process. 15, 291 (2016)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  40. Luo, S., Fu, S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. Akhtarshenas, S.J., Mohammadi, H., Karimi, S., Azmi, Z.: Computable measure of quantum correlation. Quantum Inf. Process. 14, 247 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. Luo, S., Fu, S.: Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)

    Article  ADS  MATH  Google Scholar 

  43. Girolami, D., Adesso, G.: Interplay between computable measures of entanglement and other quantum correlations. Phys. Rev. A 84, 052110 (2011)

    Article  ADS  Google Scholar 

  44. Yuan, Y.-L., Hou, X.-W.: Thermal geometric discords in a two-qutrit system. Int. J. Quantum Inf. 14, 1650016 (2016)

    Article  MATH  Google Scholar 

  45. Pozzobom, M.B., Maziero, J.: Environment-induced quantum coherence spreading of a qubit. Ann. Phys. 377, 243 (2017)

    Article  ADS  MATH  Google Scholar 

  46. Chandrashekar, R., Manikandan, P., Segar, J., Byrnes, T.: Distribution of quantum coherence in multipartite systems. Phys. Rev. Lett. 116, 150504 (2016)

    Article  Google Scholar 

  47. Tan, K.C., Kwon, H., Park, C.-Y., Jeong, H.: Unified view of quantum correlations and quantum coherence. Phys. Rev. A 94, 022329 (2016)

    Article  ADS  Google Scholar 

  48. Audenaert, K.M.R., Calsamiglia, J., Munõz-Tapia, R., Bagan, E., Masanes, L., Acin, A., Verstraete, F.: Discriminating states: the quantum Chernoff bound. Phys. Rev. Lett. 98, 160501 (2007)

    Article  ADS  Google Scholar 

  49. Maziero, J.: Non-monotonicity of trace distance under tensor products. Braz. J. Phys. 45, 560 (2015)

    Article  ADS  Google Scholar 

  50. Rana, S., Parashar, P., Lewenstein, M.: Trace-distance measure of coherence. Phys. Rev. A 93, 012110 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  51. Shao, L.-H., Xi, Z., Fan, H., Li, Y.: Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A 91, 042120 (2015)

    Article  ADS  Google Scholar 

  52. Wang, Z., Wang, Y.-L., Wang, Z.-X.: Trace distance measure of coherence for a class of qudit states. Quantum Inf. Process. 15, 4641 (2016)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  53. Kimura, G.: The Bloch vector for N-level systems. Phys. Lett. A 314, 339 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  54. Bertlmann, R.A., Krammer, P.: Bloch vectors for qudits. J. Phys. A Math. Theor. 41, 235303 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  55. Maziero, J.: Computing coherence vectors and correlation matrices with application to quantum discord quantification. Adv. Math. Phys. 2016, e6892178 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  56. https://github.com/jonasmaziero/LibForQ

  57. Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)

    Article  ADS  Google Scholar 

  58. Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114, 210401 (2015)

    Article  ADS  Google Scholar 

  59. Guo, J.-L., Li, H., Long, G.-L.: Decoherent dynamics of quantum correlations in qubit-qutrit systems. Quantum Inf. Process. 12, 3421 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  60. Khan, S., Ahmad, I.: Environment generated quantum correlations in bipartite qubit–qutrit systems. Optik 127, 2448 (2016)

    Article  ADS  Google Scholar 

  61. Soares-Pinto, D.O., Moussa, M.H.Y., Maziero, J., de Azevedo, E.R., Bonagamba, T.J., Serra, R.M., Céleri, L.C.: Equivalence between Redfield- and master-equation approaches for a time-dependent quantum system and coherence control. Phys. Rev. A 83, 062336 (2011)

    Article  ADS  Google Scholar 

  62. Maziero, J.: Fortran code for generating random probability vectors, unitaries, and quantum states. Front. ICT 3, 4 (2016)

    Article  Google Scholar 

  63. https://github.com/jonasmaziero/LibForro

Download references

Acknowledgements

This work was supported by the Brazilian funding agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), processes 441875/2014-9 and 303496/2014-2, Coordenação de Desenvolvimento de Pessoal de Nível Superior (CAPES), process 6531/2014-08, and Instituto Nacional de Ciência e Tecnologia de Informação Quântica (INCT-IQ), process 2008/57856-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Maziero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maziero, J. Hilbert–Schmidt quantum coherence in multi-qudit systems. Quantum Inf Process 16, 274 (2017). https://doi.org/10.1007/s11128-017-1726-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1726-4

Keywords

Navigation