Skip to main content
Log in

The excitonic qubit coupled with a phonon bath on a star graph: anomalous decoherence and coherence revivals

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Based on the operatorial formulation of perturbation theory, the dynamical properties of a Frenkel exciton coupled with a thermal phonon bath on a star graph are studied. Within this method, the dynamics is governed by an effective Hamiltonian which accounts for exciton–phonon entanglement. The exciton is dressed by a virtual phonon cloud, whereas the phonons are dressed by virtual excitonic transitions. Special attention is paid to the description of the coherence of a qubit state initially located on the central node of the graph. Within the nonadiabatic weak coupling limit, it is shown that several timescales govern the coherence dynamics. In the short time limit, the coherence behaves as if the exciton was insensitive to the phonon bath. Then, quantum decoherence takes place, this decoherence being enhanced by the size of the graph and by temperature. However, the coherence does not vanish in the long time limit. Instead, it exhibits incomplete revivals that occur periodically at specific revival times and it shows almost exact recurrences that take place at particular super-revival times, a singular behavior that has been corroborated by performing exact quantum calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467 (1982)

    Article  MathSciNet  Google Scholar 

  2. Deutsch, D.: Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400, 97 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Shor, P.W.: Algorithms for quantum computation discrete log and factoring. In: Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, Los Alamos, p. 20 (1994)

  4. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, pp. 212–219. ACM Press, New York (1996)

  5. Le Bellac, M.: A Short Introduction to Quantum Information and Quantum Computation. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  6. Mulken, O., Blumen, A.: Continuous-time quantum walks: models for coherent transport on complex networks. Phys. Rep. 502, 37 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  7. Pouthier, V.: Vibron in finite size molecular lattices: a route for high-fidelity quantum state transfer at room temperature. J. Phys.: Condens. Matter 24, 445401 (2012)

    Google Scholar 

  8. Kamada, H., Gotoh, H.: Quantum computation with quantum dot excitons. Semicond. Sci. Technol. 19, S392 (2004)

    Article  ADS  Google Scholar 

  9. Astruc, D., Boisselier, E., Ornelas, C.: Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem. Rev. 110, 1857 (2010)

    Article  Google Scholar 

  10. Mulken, O., Bierbaum, V., Blumen, A.: Coherent exciton transport in dendrimers and continuous-time quantum walks. J. Chem. Phys. 124, 124905 (2006)

    Article  ADS  Google Scholar 

  11. Ambainis, A.: Quantum walks and their algorithmic applications. Int. J. Quantum Inf. 1, 507 (2003)

    Article  MATH  Google Scholar 

  12. Childs, A.M.: Universal computation by quantum walk. Phys. Rev. Lett. 102, 180501 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  13. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput. 37, 210 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Childs, A.M., Goldstone, J.: Spatial search by quantum walk. Phys. Rev. A 70, 022314 (2004)

    Article  ADS  Google Scholar 

  15. Childs, A.M., Farhi, E., Gutmann, S.: An example of the difference between quantum and classical random walks. Quantum Inf. Process. 1, 35 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jackson, S.R., Khoo, T.J., Strauch, F.W.: Quantum walks on trees with disorder: decay, diffusion, and localization. Phys. Rev. A 86, 022335 (2012)

    Article  ADS  Google Scholar 

  17. Rebentrost, P., Mohseni, M., Kassal, I., Lloyd, S., Aspuru-Guzik, A.: Environment-assisted quantum transport. New J. Phys. 11, 033003 (2009)

    Article  ADS  Google Scholar 

  18. Cardoso, A.L., Andrade, R.F.S., Souza, A.M.C.: Localization properties of a tight-binding electronic model on the Apollonian network. Phys. Rev. B 78, 214202 (2008)

    Article  ADS  Google Scholar 

  19. Xu, X.P., Li, W., Liu, F.: Coherent transport on Apollonian networks and continuous-time quantum walks. Phys. Rev. E 78, 052103 (2008)

    Article  ADS  Google Scholar 

  20. Darazs, Z., Anishchenko, A., Kiss, T., Blumen, A., Mulken, O.: Transport properties of continuous-time quantum walks on Sierpinski fractals. Phys. Rev. E 90, 032113 (2014)

    Article  ADS  Google Scholar 

  21. Agliari, E., Blumen, A., Mulken, O.: Quantum-walk approach to searching on fractal structures. Phys. Rev. A 82, 012305 (2010)

    Article  ADS  Google Scholar 

  22. Mulken, O., Dolgushev, M., Galiceanu, M.: Complex quantum networks: from universal breakdown to optimal transport. Phys. Rev. E 93, 022304 (2016)

    Article  ADS  Google Scholar 

  23. Pouthier, V.: The excitonic qubit on a star graph: dephasing-limited coherent motion. Quantum Inf. Process. 14, 491 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Pouthier, V.: Exciton-mediated quantum search on a star graph. Quantum Inf. Process. 14, 3139 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Salimi, S.: Continuous-time quantum walks on star graphs. Ann. Phys. 324, 1185 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Xu, X.P.: Exact analytical results for quantum walks on star graphs. J. Phys. A: Math. Theor. 42, 115205 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Ziletti, A., Borgonovi, F., Celardo, G.L., Izrailev, F.M., Kaplan, L., Zelevinsky, V.G.: Coherent transport in multibranch quantum circuits. Phys. Rev. B 85, 052201 (2012)

    Article  ADS  Google Scholar 

  28. Anishchenko, A., Blumen, A., Mulken, O.: Enhancing the spreading of quantum walks on star graphs by additional bonds. Quantum Inf. Process. 11, 1273 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bennet, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature 404, 247 (2000)

    Article  ADS  Google Scholar 

  30. Bose, S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91, 207901 (2003)

    Article  ADS  Google Scholar 

  31. Bose, S.: Quantum communication through spin chain dynamics: an introductory overview. Contemp. Phys. 48, 13 (2007)

    Article  ADS  Google Scholar 

  32. Christandl, M., Datta, N., Ekert, A., Landahl, A.J.: Perfect state transfer in quantum spin networks. Phys. Rev. Lett. 92, 187902 (2004)

    Article  ADS  Google Scholar 

  33. Ajoy, A., Cappellaro, P.: Mixed-state quantum transport in correlated spin networks. Phys. Rev. A 85, 042305 (2012)

    Article  ADS  Google Scholar 

  34. Burgarth, D., Bose, S.: Conclusive and arbitrarily perfect quantum-state transfer using parallel spin-chain channels. Phys. Rev. A 71, 052315 (2005)

    Article  ADS  Google Scholar 

  35. Pouthier, V.: Exciton localization-delocalization transition in an extended dendrimer. J. Chem. Phys. 139, 234111 (2013)

    Article  ADS  Google Scholar 

  36. Pouthier, V.: Disorder-enhanced exciton delocalization in an extended dendrimer. Phys. Rev. E 90, 022818 (2014)

    Article  ADS  Google Scholar 

  37. Plenio, M.B., Hartley, J., Eisert, J.: Dynamics and manipulation of entanglement in coupled harmonic systems with many degrees of freedom. New J. Phys. 6, 36 (2004)

    Article  ADS  Google Scholar 

  38. Plenio, M.B., Semio, F.L.: High efficiency transfer of quantum information and multiparticle entanglement generation in translation-invariant quantum chains. New J. Phys. 7, 73 (2005)

    Article  ADS  Google Scholar 

  39. Gollub, C.: Femtosecond Quantum Control Studies on Vibrational Quantum Information Processing. Ph.D. thesis, Ludwig Maximilian University of Munich (2009)

  40. Pouthier, V.: Vibrational exciton mediated quantum state transfer: simple model. Phys. Rev. B 85, 214303 (2012)

    Article  ADS  Google Scholar 

  41. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, New York (2007)

    Book  MATH  Google Scholar 

  42. Mahan, G.D.: Many-Particle Physics. Kluwer/Plenum, New York (2000)

    Book  Google Scholar 

  43. Grover, M., Silbey, R.: Exciton migration in molecular crystals. J. Chem. Phys. 54, 4843 (1971)

    Article  ADS  Google Scholar 

  44. May, V., Kuhn, O.: Charge and Energy Transfer Dynamics in Molecular Systems. Wiley, Berlin (2000)

    Google Scholar 

  45. Barnett, S.M., Stenholm, S.: Hazards of reservoir memory. Phys. Rev. A 64, 033808 (2001)

    Article  ADS  Google Scholar 

  46. Pouthier, V.: Narrow band exciton coupled with acoustical anharmonic phonons: application to the vibrational energy flow in a lattice of H-bonded peptide units. J. Phys.: Condens. Matter 22, 255601 (2010)

    ADS  Google Scholar 

  47. Esposito, M., Gaspard, P.: Quantum master equation for a system influencing its environment. Phys. Rev. E 68, 066112 (2003)

    Article  ADS  Google Scholar 

  48. Pouthier, V.: Parametric resonance-induced time-convolutionless master equation breakdown in finite size exciton–phonon systems. J. Phys.: Condens. Matter 22, 385401 (2010)

    ADS  Google Scholar 

  49. Pouthier, V.: Excitonic coherence in a confined lattice: a simple model to highlight the relevance of the perturbation theory. Phys. Rev. B 83, 085418 (2011)

    Article  ADS  Google Scholar 

  50. Pouthier, V.: Quantum decoherence in finite size exciton–phonon systems. J. Chem. Phys. 134, 114516 (2011)

    Article  ADS  Google Scholar 

  51. Pouthier, V.: Polaron–phonon interaction in a finite-size lattice: a perturbative approach. Phys. Rev. B 84, 134301 (2011)

    Article  ADS  Google Scholar 

  52. Pouthier, V.: Energy transfer in finite-size exciton–phonon systems: confinement-enhanced quantum decoherence. J. Chem. Phys. 137, 114702 (2012)

    Article  ADS  Google Scholar 

  53. Mukamel, S.: Principles of Nonlinear Optical Spectroscopy. Oxford University Press, New York (1995)

    Google Scholar 

  54. Yalouz, S., Pouthier, V.: Exciton–phonon system on a star graph: a perturbative approach. Phys. Rev. E 93, 052306 (2016)

    Article  ADS  Google Scholar 

  55. Holstein, T.: Studies of polaron motion: part I. The molecular-crystal model. Ann. Phys. 8, 325 (1959)

    Article  ADS  MATH  Google Scholar 

  56. Holstein, T.: Studies of polaron motion: part II. The small polaron. Ann. Phys. 8, 343 (1959)

    Article  ADS  MATH  Google Scholar 

  57. Pouthier, V., Light, J.C.: Quantum transport theory of vibrons in molecular monolayer. J. Chem. Phys. 114, 4955 (2001)

    Article  ADS  Google Scholar 

  58. Wagner, M.: Unitary Transformations in Solid State Physics. North-Holland, Amsterdam (1986)

    Google Scholar 

  59. Shor, P.: Scheme for reducing decoherence in quantum memory. Phys. Rev. A 52, R2493 (1995)

    Article  ADS  Google Scholar 

  60. Viola, L., Lloyd, S.: Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58, 2733 (1998)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Pouthier.

Appendices

Appendix 1: Quasi-degenerate second-order perturbation theory

As detailed previously [54], the generator of the unitary transformation up to second order in V is given by the following equations

$$\begin{aligned} \left[ H_0,S_1 \right]= & {} V_{NC}, \nonumber \\ \left[ H_0,S_2 \right]= & {} \frac{1}{2} [ S_1,V ]_{NC}, \nonumber \\ \hat{H}= & {} H_0+\frac{1}{2}[ S_1,V]_{C}, \end{aligned}$$
(27)

where the symbol C means phonon-conserving part of the operator, whereas the symbol NC means phonon-nonconserving part of the operator. From the expression of the exciton–phonon interaction Hamiltonian V, one easily obtains

$$\begin{aligned} S_1= & {} \sum _{\ell =0}^N Z^{(\ell )} a_\ell ^{\dag }-Z^{(\ell )\dag } a_\ell , \nonumber \\ S_2= & {} \sum _{\ell \ell '} E^{(\ell \ell ')}a_\ell ^{\dag }a_{\ell '}^{\dag }-E^{(\ell \ell ')\dag }a_{\ell '}a_{\ell } . \end{aligned}$$
(28)

In the exciton eigenbasis, the various operators that enter the definition of the generator are defined in terms of the coupling operator \(M^{(\ell )}=\varDelta _{0}|\ell \rangle \langle \ell |\) as

$$\begin{aligned}&[H_\mathrm{A},Z^{(\ell )}]+\varOmega _0 Z^{(\ell )} = M^{(\ell )}, \nonumber \\&A^{(\ell \ell ')}= [Z^{(\ell )},M^{(\ell ')}]/2 , \nonumber \\&[H_\mathrm{A}, E^{(\ell \ell ')}] + 2\varOmega _0 E^{(\ell \ell ')} = A^{(\ell \ell ')} . \end{aligned}$$
(29)

Appendix 2: Excitonic coherences

In the excitonic eigenbasis \(\{|\chi _i\rangle \}\), the approximate expression for the effective exciton propagator up to second order in the exciton–phonon coupling is written as

$$\begin{aligned} G_{ij}(t)= & {} \delta _{ij} \frac{\mathcal {Z}_\mathrm{B}^{(i)}(t)}{\mathcal {Z}_\mathrm{B}} \ \mathrm{e}^{-i\hat{\epsilon }_{i}t} - \frac{\mathcal {Z}_\mathrm{B}^{(i)}(t)}{2\mathcal {Z}_\mathrm{B}}\ \mathrm{e}^{-i\hat{\epsilon }_{i}t} \left[ \sum _{\ell ,\ell '}\sum _{i'}\left( Z^{(\ell )}_{ii'}Z_{i'j}^{(\ell ')\dagger } +Z_{ii'}^{(\ell ')\dagger } Z^{(\ell )}_{i'j} \right) \right. \nonumber \\&\times \sum _{q} \beta _{q,i}^*(\ell ) \beta _{q,i}(\ell ')\ n_{q,i}(t) \left. + \sum _\ell \sum _{i'} Z_{ii'}^{(\ell )\dagger } Z^{(\ell )}_{i'j} \right] \nonumber \\&- \frac{\mathcal {Z}_\mathrm{B}^{(j)}(t)}{2\mathcal {Z}_\mathrm{B}}\ \mathrm{e}^{-i\hat{\epsilon }_{j}t} \left[ \sum _{\ell ,\ell '}\sum _{i'}\left( Z^{(\ell )}_{ii'}Z_{i'j}^{(\ell ')\dagger } +Z_{ii'}^{(\ell ')\dagger } Z^{(\ell )}_{i'j} \right) \right. \nonumber \\&\times \sum _{q} \beta _{q,j}^*(\ell ) \beta _{q,j}(\ell ')\ n_{q,j}(t) \left. + \sum _\ell \sum _{i'} Z_{ii'}^{(\ell )\dagger } Z^{(\ell )}_{i'j} \right] \nonumber \\&+ \sum _{i'}\frac{\mathcal {Z}_\mathrm{B}^{(i')}(t)}{\mathcal {Z}_\mathrm{B}} \mathrm{e}^{-i\hat{\epsilon }_{i}t} \sum _{\ell ,\ell '} \left[ Z^{(\ell )}_{ii'}Z_{i'j}^{(\ell ')\dagger } \sum _{q} n_{q,i'}(t)\ \mathrm{e}^{i(\varOmega _0+\delta \varOmega _{q,i'} ) t} \beta _{q,i'}^*(\ell ) \beta _{q,i'}(\ell ') \right. \nonumber \\&\left. + Z_{ii'}^{(\ell ')\dagger } Z^{(\ell )}_{i'j} \sum _{q} (n_{q,i'}(t)+1) \ \mathrm{e}^{-i (\varOmega _0+\delta \varOmega _{q,i'})t} \beta _{q,i'}(l) \beta _{q,i'}^*(l') \right] , \end{aligned}$$
(30)

where \(n_{q,i}(t) = (\mathrm{e}^{\beta \varOmega _0+i\varOmega _{q,i}t} - 1)^{-1}\). In Eq. (30), \(Z_{ij}^{(\ell )}\) and \(Z_{ij}^{(\ell )\dag }\) are the matrix elements in the excitonic eigenbasis of the operator \(Z^{(\ell )}\) and \(Z^{(\ell )\dag }\) defined in “Appendix 1.” At this step, the effective propagator \(G_{\ell \ell _0}(t)\) is obtained by performing a change of basis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yalouz, S., Falvo, C. & Pouthier, V. The excitonic qubit coupled with a phonon bath on a star graph: anomalous decoherence and coherence revivals. Quantum Inf Process 16, 143 (2017). https://doi.org/10.1007/s11128-017-1592-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1592-0

Keywords

Navigation