Skip to main content
Log in

Schmidt number of bipartite and multipartite states under local projections

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The Schmidt number is a fundamental parameter characterizing the properties of quantum states, and local projections are fundamental operations in quantum physics. We investigate the relation between the Schmidt numbers of bipartite states and their projected states. We show that there exist bipartite positive partial transpose entangled states of any given Schmidt number. We further construct the notion of joint Schmidt number for multipartite states and explore its relation with the Schmidt number of bipartite reduced density operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sanpera, A., Bruß, D., Lewenstein, M.: Schmidt-number witnesses and bound entanglement. Phys. Rev. A 63, 050301 (2001)

    Article  ADS  Google Scholar 

  2. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  3. Terhal, B.M., Horodecki, P.: A schmidt number for density matrices. Phys. Rev. A 61, 040301 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bennett, C.H., Divincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  5. Chen, L., Đoković, D.Ž.: Description of rank four entangled states of two qutrits having positive partial transpose. J. Math. Phys. 52(12), 122203 (2011)

  6. Chen, L., Đoković, D.Ž.: Distillability of non-positive-partial-transpose bipartite quantum states of rank four. Phys. Rev. A 94, 052318 (2016)

  7. Chen, L., Li, Y.: Nonlocal and controlled unitary operators of Schmidt rank three. Phys. Rev. A 89, 062326 (2014)

    Article  ADS  Google Scholar 

  8. Chen, L., Li, Y.: On the Schmidt-rank-three bipartite and multipartite unitary operator. Ann. Phys. 351, 682–703 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  9. Chen, L., Li, Y.: Decomposition of bipartite and multipartite unitary gates into the product of controlled unitary gates. Phys. Rev. A 91, 032308 (2015)

    Article  ADS  Google Scholar 

  10. Chen, L., Chitambar, E., Modi, K., Vacanti, G.: Detecting multipartite classical states and their resemblances. Phys. Rev. A 83, 020101 (2011)

    Article  ADS  Google Scholar 

  11. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Cubitt, T., Montanaro, A., Winter, A.: On the dimension of subspaces with bounded schmidt rank. J. Math. Phys. 49, 2022107 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Bennett, C.H., Divincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible product bases and bound entanglement. Phys. Rev. Lett. 82, 5385–5388 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Gupta, V.P., Mandayam, P., Sunder, V.S.: The functional analysis of quantum information theory: a collection of notes based on Lectures by Gilles Pisier, K. R. Parthasarathy, Vern Paulsen and Andreas Winter. Lecture Notes in Physics 902. Springer International Publishing, 1st edn (2015)

  15. Stormer, E.: Extension of positive maps into \(B({\cal{H}})\). J. Funct. Anal. 66, 235–254 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Itoh, T.: Positive maps and cones in \(C^*\)-algebras. Math. Jpn. 31, 607–616 (1986)

    MathSciNet  MATH  Google Scholar 

  17. Eom, M.-H., Kye, S.-H.: Duality for positive linear maps in matrix algebras. Math. Scan. 86, 130–142 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kye, S.-H.: Facial structures for various notions of positivity and applications to the theory of entanglement. Rev. Math. Phys. 25, 1330002 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Terhal, B.M.: Bell inequalities and the separability criterion. Phys. Lett. A 271, 319–326 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Yang, Y., Leung, D.H., Tang, W.-S.: All 2-positive linear maps from \(M_3({\mathbb{C}})\) to \(M_3({\mathbb{C}})\) are decomposable. Linear Algebra Appl. 503, 233–247 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Horodecki, M., Horodecki, P.: Reduction criterion of separability and limits for a class of distillation protocols. Phys. Rev. A 59, 4206 (1999)

    Article  ADS  Google Scholar 

  22. Hughston, L.P., Jozsa, R., Wootters, W.K.: A complete classification of quantum ensembles having a given density matrix. Phys. Lett. A 183, 14 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  23. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1–8 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Chen, L., Đoković, D.Ž.: Separability problem for multipartite states of rank at most 4. J. Phys. A Math. Theor. 46, 275304 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Eisert, J., Briegel, H.J.: Schmidt measure as a tool for quantifying multiparticle entanglement. Phys. Rev. A 64, 022306 (2001)

    Article  ADS  Google Scholar 

  26. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  27. Terhal, B.M., Horodecki, P., Smolin, J.A., Thapliyal, A.V.: Rank two bipartite bound entangled states do not exist. Theor. Comput. Sci. 292, 589–596 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Cadney, J., Huber, M., Linden, N., Winter, A.: Inequalities for the ranks of multipartite quantum states. Linear Algebra Appl. 452, 153–171 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhu, H., Chen, L., Hayashi, M.: Additivity and non-additivity of multipartite entanglement measures. New J. Phys. 12, 083002 (2010). arXiv:1002.2511 [quant-ph]

  30. Kyung Hoon Han and Seung-Hyeok Kye: Various notions of positivity for bi-linear maps and applications to tri-partite entanglement. J. Math. Phys. 57, 015205 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Lin Chen was supported by the NSF of China (Grant No. 11501024), and the Fundamental Research Funds for the Central Universities (Grant Nos. 30426401, 30458601 and 29816133). Yu Yang acknowledged financial support from Department of Mathematics, National University of Singapore, for his Ph.D. study. Wai-Shing Tang was partially supported by Singapore Ministry of Education Academic Research Fund Tier 1 Grant (No. R-146-000-193-112). The authors would like to thank Farid Shahandeh for his comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Yang, Y. & Tang, WS. Schmidt number of bipartite and multipartite states under local projections. Quantum Inf Process 16, 75 (2017). https://doi.org/10.1007/s11128-016-1501-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-016-1501-y

Keywords

Navigation