Skip to main content
Log in

Lower bounds of concurrence for N-qubit systems and the detection of k-nonseparability of multipartite quantum systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Concurrence, as one of the entanglement measures, is a useful tool to characterize quantum entanglement in various quantum systems. However, the computation of the concurrence involves difficult optimizations and only for the case of two qubits, an exact formula was found. We investigate the concurrence of four-qubit quantum states and derive analytical lower bound of concurrence using the multiqubit monogamy inequality. It is shown that this lower bound is able to improve the existing bounds. This approach can be generalized to arbitrary qubit systems. We present an exact formula of concurrence for some mixed quantum states. For even-qubit states, we derive an improved lower bound of concurrence using a monogamy equality for qubit systems. At the same time, we show that a multipartite state is k-nonseparable if the multipartite concurrence is larger than a constant related to the value of k, the qudit number and the dimension of the subsystems. Our results can be applied to detect the multipartite k-nonseparable states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  2. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474, 1–75 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  4. Eltschka, C., Siewert, J.: Quantifying entanglement resources. J. Phys. A: Math. Theor. 47, 424005-1–424005-54 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022–5025 (1997)

    Article  ADS  Google Scholar 

  6. Rungta, P., Bužek, V., Caves, C.M., Hillery, M., Milburn, G.J.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64, 042315-1–042315-13 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  7. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  Google Scholar 

  8. Terhal, B.M., Vollbrecht, K.G.H.: Entanglement of formation for isotropic states. Phys. Rev. Lett. 85, 2625–2628 (2000)

    Article  ADS  Google Scholar 

  9. Vollbrecht, K.G.H., Werner, R.F.: Entanglement measures under symmetry. Phys. Rev. A 64, 062307-1–062307-15 (2001)

    Article  ADS  Google Scholar 

  10. Rungta, P., Caves, C.M.: Concurrence-based entanglement measures for isotropic states. Phys. Rev. A 67, 012307-1–012307-9 (2003)

    Article  ADS  Google Scholar 

  11. Mintert, F., Kuś, M., Buchleitner, A.: Concurrence of mixed bipartite quantum states in arbitrary dimensions. Phys. Rev. Lett. 92, 167902-1–167902-4 (2004)

    Article  ADS  Google Scholar 

  12. Chen, K., Albeverio, S., Fei, S.M.: Concurrence of arbitrary dimensional bipartite quantum states. Phys. Rev. Lett. 95, 040504-1–040504-4 (2005)

    ADS  MathSciNet  Google Scholar 

  13. de Vicente, J.I.: Lower bounds on concurrence and separability conditions. Phys. Rev. A 75, 052320-1–052320-5 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  14. Zhang, C.J., Zhang, Y.S., Zhang, S., Guo, G.C.: Optimal entanglement witnesses based on local orthogonal observables. Phys. Rev. A 76, 012334-1–012334-6 (2007)

    ADS  Google Scholar 

  15. Gerjuoy, E.: Lower bound on entanglement of formation for the qubit-qudit system. Phys. Rev. A 67, 052308-1–052308-10 (2003)

    Article  ADS  Google Scholar 

  16. Zhao, M.J., Zhu, X.N., Fei, S.M., Li-Jost, X.Q.: Lower bound on concurrence and distillation for arbitrary-dimensional bipartite quantum states. Phys. Rev. A 84, 062322-1–062322-5 (2011)

    ADS  Google Scholar 

  17. Carvalho, A.R.R., Mintert, F., Buchleitner, A.: Decoherence and multipartite entanglement. Phys. Rev. Lett. 93, 230501-1–230501-4 (2004)

    ADS  Google Scholar 

  18. Gao, X.H., Fei, S.M., Wu, K.: Lower bounds of concurrence for tripartite quantum systems. Phys. Rev. A 74, 050303-1–050303-4 (2006)

    ADS  Google Scholar 

  19. Chen, Z.H., Ma, Z.H., Gühne, O., Severini, S.: Estimating entanglement monotones with a generalization of the Wootters formula. Phys. Rev. Lett. 109, 200503-1–200503-5 (2012)

    ADS  Google Scholar 

  20. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306-1–052306-5 (2000)

    Article  ADS  Google Scholar 

  21. Osborne, T.J., Verstraete, F.: General monogamy inequality for bipartite qubit entanglement. Phys. Rev. Lett. 96, 220503-1–220503-4 (2006)

    Article  ADS  Google Scholar 

  22. Zhu, X.N., Fei, S.M.: Lower bound of concurrence for qubit systems. Quantum Inf. Process. 13, 815–823 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gabriel, A., Hiesmayr, B.C., Huber, M.: Criterion for \(k\)-separability in mixed multipartite states. Quantum Inf. Comput. 10, 829–836 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Gao, T., Hong, Y.: Detection of genuinely entangled and nonseparable \(n\)-partite quantum states. Phys. Rev. A 82, 062113-1–062113-7 (2010)

    ADS  Google Scholar 

  25. Gao, T., Hong, Y.: Separability criteria for several classes of \(n\)-partite quantum states. Eur. Phys. J. D 61, 765–771 (2011)

    Article  ADS  Google Scholar 

  26. Gao, T., Hong, Y., Lu, Y., Yan, F.L.: Efficient \(k\)-separability criteria for mixed multipartite quantum states. Europhys. Lett. 104, 20007-1–20007-6 (2013)

  27. Hong, Y., Luo, S.L., Song, H.T.: Detecting \(k\)-nonseparability via quantum Fisher information. Phys. Rev. A 91, 042313-1–042313-6 (2015)

    ADS  Google Scholar 

  28. Liu, L., Gao, T., Yan, F.L.: Separability criteria via sets of mutually unbiased measurements. Sci. Rep. 5, 13138-1–13138-9 (2015)

    ADS  Google Scholar 

  29. Hong, Y., Luo, S.L.: Detecting \(k\)-nonseparability via local uncertainty relations. Phys. Rev. A 93, 042310-1–042310-6 (2016)

    ADS  Google Scholar 

  30. Ma, Z.H., Chen, Z.H., Chen, J.L., Spengler, C., Gabriel, A., Huber, M.: Measure of genuine multipartite entanglement with computable lower bounds. Phys. Rev. A 83, 062325-1–062325-5 (2011)

    ADS  Google Scholar 

  31. Chen, Z.H., Ma, Z.H., Chen, J.L., Severini, S.: Improved lower bounds on genuine-multipartite-entanglement concurrence. Phys. Rev. A 85, 062320-1–062320-12 (2012)

    ADS  Google Scholar 

  32. Hong, Y., Gao, T., Yan, F.L.: Measure of multipartite entanglement with computable lower bounds. Phys. Rev. A 86, 062323-1–062323-10 (2012)

    ADS  Google Scholar 

  33. Gao, T., Yan, F.L., van Enk, S.J.: Permutationally invariant part of a density matrix and nonseparability of \(N\)-qubit states. Phys. Rev. Lett. 112, 180501-1–180501-5 (2014)

    ADS  Google Scholar 

  34. Aolita, L., Mintert, F.: Measuring multipartite concurrence with a single factorizable observable. Phys. Rev. Lett. 97, 050501-1–050501-4 (2006)

    Article  ADS  Google Scholar 

  35. Gour, G., Bandyopadhyay, S., Sanders, B.C.: Dual monogamy inequality for entanglement. J. Math. Phys. 48, 012108-1–012108-13 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Gour, G., Wallach, N.R.: All maximally entangled four-qubit states. J. Math. Phys. 51, 112201-1–112201-24 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Eltschka, C., Siewert, J.: Monogamy equalities for qubit entanglement from Lorentz invariance. Phys. Rev. Lett. 114, 140402-1–140402-5 (2015)

    Article  ADS  Google Scholar 

  38. Wong, A., Christensen, N.: Potential multiparticle entanglement measure. Phys. Rev. A 63, 044301-1–044301-4 (2001)

    ADS  Google Scholar 

  39. Hassan, A.S.M., Joag, P.S.: Separability criterion for multipartite quantum states based on the Bloch representation of density matrices. Quantum Inf. Comput. 8, 773–790 (2008)

    MathSciNet  MATH  Google Scholar 

  40. Li, M., Fei, S.M., Li-Jost, X.Q., Fan, H.: Genuine multipartite entanglement detection and lower bound of multipartite concurrence. Phys. Rev. A 92, 062338-1–062338-6 (2015)

    ADS  Google Scholar 

  41. Dür, W., Cirac, J.I.: Classification of multiqubit mixed states: separability and distillability properties. Phys. Rev. A 61, 042314-1–042314-11 (2000)

    ADS  MathSciNet  Google Scholar 

  42. Schack, R., Caves, C.M.: Explicit product ensembles for separable quantum states. J. Mod. Opt. 47, 387–399 (2000)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos: 11371005, 11475054, Hebei Natural Science Foundation of China under Grant Nos: A2014205060, A2016205145.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, X., Gao, T. & Yan, F. Lower bounds of concurrence for N-qubit systems and the detection of k-nonseparability of multipartite quantum systems. Quantum Inf Process 16, 23 (2017). https://doi.org/10.1007/s11128-016-1450-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-016-1450-5

Keywords

Navigation