Skip to main content
Log in

Discrete-time quantum walks on Cayley graphs of Dihedral groups using generalized Grover coins

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we study discrete-time quantum walks on Cayley graphs corresponding to Dihedral groups, which are graphs with both directed and undirected edges. We consider the walks with coins that are (real) linear combinations of permutation matrices of order three. We show that the walks are periodic only for coins that are permutation or negative of a permutation matrix. Finally, we investigate the localization property of the walks through numerical simulations and observe that the walks localize for a wide range of coins for different sizes of the graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Acevedo, O.L., Gobron, T.: Quantum walks on Cayley graphs. J. Phys. A: Math. Gen. 39(3), 585 (2005)

    Article  MathSciNet  Google Scholar 

  2. Acevedo, O.L., Roland, J., Cerf, N.J.: 2006. Exploring scalar quantum walks on Cayley graphs. Quant. Inf. Comput. 8, 68 (2008)

  3. D’Ariano, G.M., Erba, M., Perinotti, P.: Chirality from quantum walks without a quantum coin. Phys. Rev. A 100(1), 012105 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  4. Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs, in Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing (Association for Computing Machinery, New York, NY), pp. 50-59, (2001)

  5. Aharonov, D., Van Dam, W., Kempe, J., Landau, Z., Lloyd, S., Regev, O.: Adiabatic quantum computation is equivalent to standard quantum computation. SIAM J. Comput. 37(1), 166–194 (2008)

    Article  MathSciNet  Google Scholar 

  6. Ash, R. B.: Abstract Algebra: The Basic Graduate Year, (2000)

  7. Banerjee, A.: Discrete quantum walks on the symmetric group, arXiv preprint, arXiv:2203.15148, (2022)

  8. Berry, D. W., Childs, A. M., Kothari, R.: Hamiltonian Simulation with Nearly Optimal Dependence on all Parameters, IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 792-809, (2015)

  9. Bisio, A., D’Ariano, G.M., Erba, M., Perinotti, P., Tosini, A.: Quantum walks with a one-dimensional coin. Phys. Rev. A 93(6), 062334 (2016)

    Article  ADS  Google Scholar 

  10. Caha, L., Landau, Z., Nagaj, D.: Clocks in Feynman’s computer and Kitaev’s local Hamiltonian: Bias, gaps, idling, and pulse tuning. Phys. Rev. A 97(6), 062306 (2018)

    Article  ADS  Google Scholar 

  11. Childs, A.M., Farhi, E., Gutmann, S.: An example of the difference between quantum and classical random walks. Quant. Inf. Process. 1(1/2), 35–43 (2002)

    Article  MathSciNet  Google Scholar 

  12. Childs, A. M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D. A.: Exponential algorithmic speedup by a quantum walk, in Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing (Association for Computing Machinery, New York, NY), pp. 59-68, (2003)

  13. Childs, A.M.: Universal computation by quantum walk. Phys. Rev. Lett. 102(18), 180501 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  14. Childs, A.M., Gosset, David, Webb, Zak: Universal computation by multiparticle quantum walk. Science 339(6121), 791–794 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  15. Dai, W., Yuan, J., Li, D.: Discrete-time quantum walk on the Cayley graph of the dihedral group. Quant. Inf. Process. 17(12), 1332–1573 (2018)

    Article  MathSciNet  Google Scholar 

  16. D’Ariano, G.M., Erba, M., Perinotti, P., Tosini, A.: Virtually abelian quantum walks. J. Phys. A: Math. Theor. 50(3), 035301 (2016)

    Article  MathSciNet  Google Scholar 

  17. Dukes, P.R.: Quantum state revivals in quantum walks on cycles. Results Phys. 4, 189–197 (2014)

    Article  ADS  Google Scholar 

  18. Dummit, D. S., Foote, R. M.: Abstract algebra, (1991)

  19. Godsil, C.: Periodic graphs, The Electronic J. Combi., 18 (1), (2011)

  20. Higuchi, Y., Konno, N., Sato, I., Segawa, E.: Periodicity of the discrete-time quantum walk on a finite graph. Interdiscip. Inf. Sci. 23(1), 75–86 (2017)

    MathSciNet  Google Scholar 

  21. Inui, N., Konishi, Y., Konno, N.: Localization of two-dimensional quantum walks. Phys. Rev. A 69(5), 052323 (2004)

    Article  ADS  Google Scholar 

  22. Inui, N., Konno, N.: Localization of multi-state quantum walk in one dimension. Physica A 353, 133–144 (2005)

    Article  ADS  Google Scholar 

  23. Inui, N., Konno, N., Segawa, E.: One-dimensional three-state quantum walk. Phys. Rev. E 72(5), 056112 (2005)

    Article  ADS  Google Scholar 

  24. Kajiwara, T., Konno, N., Koyama, S., Saito, K.: Periodicity for the 3-state quantum walk on cycles, arXiv preprint, arXiv:1907.01725, (2019)

  25. Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys. 44(4), 307–327 (2003)

    Article  ADS  Google Scholar 

  26. Knittel, M., Bassirian, R.: Quantum random walks on Cayley graphs, (2018)

  27. Konno, N., Shimizu, Y., Takei, M.: Periodicity for the Hadamard walk on cycles. Interdiscip. Inf. Sci. 23(1), 1–8 (2017)

    MathSciNet  Google Scholar 

  28. Kollar, B., Štefaňák, M., Kiss, T., Jex, I.: Recurrences in three-state quantum walks on a plane. Phys. Rev. A 82(1), 012303 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  29. Kollar, B., Kiss, T., Jex, I.: Strongly trapped two-dimensional quantum walks. Phys. Rev. A 91(2), 022308 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  30. Kreyszig, E.: Introductory Functional Analysis with Applications, (1978)

  31. Kubota, S., Sekido, H., Yata, H.: Periodicity of quantum walks defined by mixed paths and mixed cycles. Linear Algebra Appl. 630, 15–38 (2021)

    Article  MathSciNet  Google Scholar 

  32. Liu, Y., Yuan, J., Dai, W., Li, D.: Three-state quantum walk on the Cayley Graph of the Dihedral Group. Quantum Inf. Process. 20(3), 1573–1332 (2021)

    Article  MathSciNet  Google Scholar 

  33. Lovett, N.B., Cooper, S., Everitt, M., Trevers, M., Kendon, V.: Universal quantum computation using the discrete-time quantum walk. Phys. Rev. A 81(4), 042330 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  34. Mandal, A., Sarma Sarkar, R., Chakraborty, S., Adhikari, B.: Limit theorems and localization of three-state quantum walks on a line defined by generalized Grover coins. Phys. Rev. A 106(4), 042405 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  35. Mandal, A., Sarma Sarkar, R., Adhikari, B.: Localization of two dimensional quantum walks defined by generalized Grover coins. J. Phys. A: Math. Theor. 56(2), 025303 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  36. Montanaro, A.: Quantum walks on directed graphs. Quant. Inf. Comput. 7(1), 93–102 (2007)

    MathSciNet  Google Scholar 

  37. Moore, C., Russell, A.: Quantum Walks on the Hypercube, In Rolim, J.D.P., Vadhan, S. (eds) Randomization and Approximation Techniques in Computer Science, RANDOM 2002. Lecture Notes in Computer Science, 2483, Springer, Berlin, Heidelberg, (2002)

  38. Nakahara, M., Ohmi, T.: Quantum Computing: From Linear Algebra to Physical Realizations (1st ed.), (2008)

  39. Niven, I.M.: Irrational Numbers, pp. 37-41, (1956)

  40. Rebentrost, P., Mohseni, M., Kassal, I., Lloyd, S., Aspuru Guzik, A.: Environment-assisted quantum transport. New J. Phys. 11, 033003 (2009)

    Article  ADS  Google Scholar 

  41. Sarma Sarkar, R., Mandal, A., Adhikari, B.: Periodicity of lively quantum walks on cycles with generalized Grover coin. Linear Algebra Appl. 604, 399–424 (2020)

    Article  MathSciNet  Google Scholar 

  42. Saito, K.: Periodicity for the Fourier quantum walk on regular graphs. Quant. Inf. Comput. 19(1–2), 23–34 (2019)

    MathSciNet  Google Scholar 

  43. Segawa, E.: Localization of quantum walks induced by recurrence properties of random walks. J. Comput. Theor. Nanosci. 10(7), 1583–1590 (2013)

    Article  Google Scholar 

  44. Tate, T.: Eigenvalues, absolute continuity and localizations for periodic unitary transition operators. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 22(2), 1950011 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  45. Tregenna, B., Flanagan, W., Maile, R., Kendon, V.: Controlling discrete quantum walks: coins and initial states. New J. Phys. 5(1), 83 (2003)

    Article  ADS  Google Scholar 

  46. Venegas-Andraca, S.E.: Quantum walks: A comprehensive review. Quant. Inf. Process. 11, 1015–1106 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Rohit Sarma Sarkar acknowledges support through Prime Minister’s Research Fellowship (PMRF), Government of India.

Author information

Authors and Affiliations

Authors

Contributions

RSS and BA have conceptualized the problem, and wrote and reviewed the manuscript.

Corresponding author

Correspondence to Bibhas Adhikari.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, R.S., Adhikari, B. Discrete-time quantum walks on Cayley graphs of Dihedral groups using generalized Grover coins. Quantum Inf Process 23, 172 (2024). https://doi.org/10.1007/s11128-024-04385-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04385-y

Keywords

Navigation