Skip to main content
Log in

Analytical error analysis of Clifford gates by the fault-path tracer method

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We estimate the success probability of quantum protocols composed of Clifford operations in the presence of Pauli errors. Our method is derived from the fault-point formalism previously used to determine the success rate of low-distance error correction codes. Here we apply it to a wider range of quantum protocols and identify circuit structures that allow for efficient calculation of the exact success probability and even the final distribution of output states. As examples, we apply our method to the Bernstein–Vazirani algorithm and the Steane [[7,1,3]] quantum error correction code and compare the results to Monte Carlo simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. J. Mod. Opt. 44, 2455 (1997)

    Article  ADS  Google Scholar 

  2. Emerson, J., Silva, M., Moussa, O., Ryan, C., Laforest, M., Baugh, J., Cory, D.G., Laflamme, R.: Symmetrized characterization of noisy quantum processes. Science 317, 1893 (2007)

    Article  ADS  Google Scholar 

  3. Knill, E., Leibfried, D., Reichle, R., Britton, J., Blakestad, R.B., Jost, J.D., Langer, C., Ozeri, R., Seidelin, S., Wineland, D.J.: Randomized benchmarking of quantum gates. Phys. Rev. A 77, 012307 (2008)

    Article  ADS  MATH  Google Scholar 

  4. Flammia, S.T., Liu, Y.K.: Direct fidelity estimation from few Pauli measurements. Phys. Rev. Lett. 106, 230501 (2011)

    Article  ADS  Google Scholar 

  5. Flammia, S.T., Gross, D., Liu, Y.K., Eisert, J.: Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators. New J. Phys. 14, 095022 (2012)

    Article  ADS  Google Scholar 

  6. da Silva, M.P., Landon-Cardinal, O., Poulin, D.: Practical characterization of quantum devices without tomography. Phys. Rev. Lett. 107, 210404 (2011)

    Article  Google Scholar 

  7. Blume-Kohout, R., Gamble, J.K., Nielsen, E., Mizrahi, J., Sterk, J.D., Maunz, P.: Robust, Self-consistent, Closed-form Tomography of Quantum Logic Gates on a Trapped Ion Qubit. arXiv:1310.4492 (2013)

  8. Merkel, S.T., Gambetta, J.M., Smolin, J.A., Poletto, S., Córcoles, A.D., Johnson, B.R., Ryan, C.A., Steffen, M.: Self-consistent quantum process tomography. Phys. Rev. A 87, 062119 (2013)

    Article  ADS  Google Scholar 

  9. Wallman, J., Granade, C., Harper, R., Flammia, S.T.: Estimating the coherence of noise. New J. Phys. 17(11), 113020 (2015)

    Article  ADS  Google Scholar 

  10. Shabani, A., Kosut, R.L., Mohseni, M., Rabitz, H., Broome, M.A., Almeida, M.P., Fedrizzi, A., White, A.G.: Efficient measurement of quantum dynamics via compressive sensing. Phys. Rev. Lett. 106, 100401 (2011)

    Article  ADS  Google Scholar 

  11. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  12. Clader, B.D., Jacobs, B.C., Sprouse, C.R.: Preconditioned quantum linear system algorithm. Phys. Rev. Lett. 110, 250504 (2013)

    Article  ADS  Google Scholar 

  13. Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits. Phys. Rev. A 70, 052328 (2004)

    Article  ADS  Google Scholar 

  14. Anders, S., Briegel, H.J.: Fast simulation of stabilizer circuits using a graph-state representation. Phys. Rev. A 73, 022334 (2006)

    Article  ADS  Google Scholar 

  15. Magesan, E., Puzzuoli, D., Granade, C.E., Cory, D.G.: Modeling quantum noise for efficient testing of fault-tolerant circuits. Phys. Rev. A 87, 012324 (2013)

    Article  ADS  Google Scholar 

  16. Gutiérrez, M., Svec, L., Vargo, A., Brown, K.R.: Approximation of realistic errors by Clifford channels and Pauli measurements. Phys. Rev. A 87, 030302 (2013)

    Article  ADS  Google Scholar 

  17. Gutiérrez, M., Brown, K.R.: Comparison of a quantum error-correction threshold for exact and approximate errors. Phys. Rev. A 91, 022335 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  18. Aliferis, P., Gottesman, D., Preskill, J.: Quantum accuracy threshold for concatenated distance-3 codes. Quantum Inf. Comput. 6, 97 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Bernstein, E., Vazirani, U.: Quantum complexity theory, In: Proceedings of the Twenty-fifth Annual ACM Symposium on Theory of Computing (ACM, New York, NY, USA, 1993), STOC ’93, pp. 11–20

  20. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Tomita, Y., Gutiérrez, M., Kabytayev, C., Brown, K.R., Hutsel, M.R., Morris, A.P., Stevens, K.E., Mohler, G.: Comparison of ancilla preparation and measurement procedures for the Steane [[7,1,3]] code on a model ion-trap quantum computer. Phys. Rev. A 88, 042336 (2013)

    Article  ADS  Google Scholar 

  22. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10th edn. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  23. Tomita, Y.: Numerical and Analytical Studies of Quantum Error Correction. Ph.D. thesis, Georgia Institute of Technology (2014)

  24. DiVincenzo, D.P., Aliferis, P.: Effective fault-tolerant quantum computation with slow measurements. Phys. Rev. Lett. 98, 220501 (2007)

    Article  MATH  Google Scholar 

  25. Aliferis, P., Cross, A.W.: Subsystem fault tolerance with the Bacon-Shor code. Phys. Rev. Lett. 98, 220502 (2007)

    Article  ADS  Google Scholar 

  26. Walt, S.v d, Colbert, S.C., Varoquaux, G.: The NumPy array: a structure for efficient numerical computation. CiSE 13, 22–30 (2011)

    Google Scholar 

  27. Orús, R.: A practical introduction to tensor networks: Matrix product states and projected entangled pair states. Ann. Phys. 349, 117–158 (2014)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank Andrew Cross, Ryan Sheehan, Alonzo Hernandez and Silas Fradley for useful discussions. This project was supported by Office of the Director of National Intelligence (ODNI)—Intelligence Advanced Research Project Activity (IARPA) through Army Research Office Grant No. W911NF-10-1-0231 and Department of Interior Contract No. D11PC20167. All statements of fact, opinion or conclusions contained herein are those of the authors and should not be construed as representing the official views or policies of IARPA, the ODNI or the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth R. Brown.

Additional information

This article is part of topical collection on Quantum Computer Science.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janardan, S., Tomita, Y., Gutiérrez, M. et al. Analytical error analysis of Clifford gates by the fault-path tracer method. Quantum Inf Process 15, 3065–3079 (2016). https://doi.org/10.1007/s11128-016-1330-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1330-z

Keywords

Navigation