Skip to main content
Log in

Sympathetic cooling in a large ion crystal

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We analyze the dynamics and steady state of a linear ion array when some of the ions are continuously laser cooled. We calculate the ions’ local temperature measured by its position fluctuation under various trapping and cooling configurations, taking into account background heating due to the noisy environment. For a large system, we demonstrate that by arranging the cooling ions evenly in the array, one can suppress the overall heating considerably. We also investigate the effect of different cooling rates and find that the optimal cooling efficiency is achieved by an intermediate cooling rate. We discuss the relaxation time for the ions to approach the steady state, and show that with periodic arrangement of the cooling ions, the cooling efficiency does not scale down with the system size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Here, the choice of \(d_{0}\) is somewhat arbitrary as long as it characterizes the length scale of the inter-ion spacing. In this article, we define \(d_{0}\) differently in various situations. For instance, in a small harmonic trap (\(N=20\)), we choose \(d_{0}\) to be the smallest spacing in the middle of the chain. In a large non-uniform ion crystal (\(N=121\)), we choose \(d_{0}=\frac{1}{100}\sum _{i=11}^{110}(z_{i+1}^{0}-z_{i}^{0})/100\), a mean value of all ion spacings except that 10 large ones on the edges are excluded.

  2. Throughout this article, we choose ytterbium 171 ions spaced by \(d_{0}=10\,\upmu \)m as examples, so \(\omega _{0}=9.0\) MHz and \(\alpha =2.0\times 10^{-3}\).

References

  1. Sørensen, A., Mølmer, K.: Quantum computation with ions in thermal motion. Phys. Rev. Lett. 82(9), 1971–1974 (1999)

    Article  ADS  Google Scholar 

  2. Milburn, G.J., Schneider, S., James, D.F.V.: Ion trap quantum computing with warm ions. Fortschr. Phys. 48(9–11), 801–810 (2000)

    Article  Google Scholar 

  3. Sørensen, A., Mølmer, K.: Entanglement and quantum computation with ions in thermal motion. Phys. Rev. A 62(2), 022311 (2000)

    Article  ADS  Google Scholar 

  4. Leibfried, D., DeMarco, B., Meyer, V., Lucas, D., Barrett, M., Britton, J., Itano, W.M., Jelenković, B., Langer, C., Rosenband, T., Wineland, D.J.: Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 422(6930), 412–415 (2003)

    Article  ADS  Google Scholar 

  5. Myerson, A.H., Szwer, D.J., Webster, S.C., Allcock, D.T.C., Curtis, M.J., Imreh, G., Sherman, J.A., Stacey, D.N., Steane, A.M., Lucas, D.M.: High-fidelity readout of trapped-ion qubits. Phys. Rev. Lett. 100(20), 200502 (2008)

    Article  ADS  Google Scholar 

  6. Burrell, A.H., Szwer, D.J., Webster, S.C., Lucas, D.M.: Scalable simultaneous multiqubit readout with 99.99% single-shot fidelity. Phys. Rev. A 81(4), 040302 (2010)

    Article  ADS  Google Scholar 

  7. Harty, T.P., Allcock, D.T.C., Ballance, C.J., Guidoni, L., Janacek, H.A., Linke, N.M., Stacey, D.N., Lucas, D.M.: High-fidelity preparation, gates, memory, and readout of a trapped-ion quantum bit. Phys. Rev. Lett. 113(22), 220501 (2014)

    Article  ADS  Google Scholar 

  8. Sackett, C.A., Kielpinski, D., King, B.E., Langer, C., Meyer, V., Myatt, C.J., Rowe, M., Turchette, Q.A., Itano, W.M., Wineland, D.J., Monroe, C.: Experimental entanglement of four particles. Nature 404(6775), 256–259 (2000)

    Article  ADS  Google Scholar 

  9. Leibfried, D., Knill, E., Seidelin, S., Britton, J., Blakestad, R.B., Chiaverini, J., Hume, D.B., Itano, W.M., Jost, J.D., Langer, C., Ozeri, R., Reichle, R., Wineland, D.J.: Creation of a six-atom ‘Schrödinger cat’ state. Nature 438(7068), 639–642 (2005)

    Article  ADS  Google Scholar 

  10. Häffner, H., Hänsel, W., Roos, C.F., Benhelm, J., Chek-al-kar, D., Chwalla, M., Körber, T., Rapol, U.D., Riebe, M., Schmidt, P.O., Becher, C., Gühne, O., Dür, W., Blatt, R.: Scalable multiparticle entanglement of trapped ions. Nature 438(7068), 643–646 (2005)

    Article  ADS  Google Scholar 

  11. Monz, T., Schindler, P., Barreiro, J.T., Chwalla, M., Nigg, D., Coish, W.A., Harlander, M., Hänsel, W., Hennrich, M., Blatt, R.: 14-qubit entanglement: creation and coherence. Phys. Rev. Lett. 106(13), 130506 (2011)

    Article  ADS  Google Scholar 

  12. Noguchi, A., Toyoda, K., Urabe, S.: Generation of Dicke states with phonon-mediated multilevel stimulated Raman adiabatic passage. Phys. Rev. Lett. 109, 260502 (2012)

    Article  ADS  Google Scholar 

  13. Jurcevic, P., Lanyon, B.P., Hauke, P., Hempel, C., Zoller, P., Blatt, R., Roos, C.F.: Quasiparticle engineering and entanglement propagation in a quantum many-body system. Nature 511(7508), 202–205 (2014)

    Article  ADS  Google Scholar 

  14. Lanyon, B.P., Zwerger, M., Jurcevic, P., Hempel, C., Dür, W., Briegel, H.J., Blatt, R., Roos, C.F.: Experimental violation of multipartite bell inequalities with trapped ions. Phys. Rev. Lett. 112, 100403 (2014)

    Article  ADS  Google Scholar 

  15. Northup, T.: Quantum physics: squeezed ions in two places at once. Nature 521(7552), 295–296 (2015)

    Article  ADS  Google Scholar 

  16. Riebe, M., Häffner, H., Roos, C.F., Hänsel, W., Benhelm, J., Lancaster, G.P.T., Körber, T.W., Becher, C., Schmidt-Kaler, F., James, D.F.V., Blatt, R.: Deterministic quantum teleportation with atoms. Nature 429(6993), 734–737 (2004)

    Article  ADS  Google Scholar 

  17. Olmschenk, S., Matsukevich, D.N., Maunz, P., Hayes, D., Duan, L.-M., Monroe, C.: Quantum teleportation between distant matter qubits. Science 323(5913), 486–489 (2009)

    Article  ADS  Google Scholar 

  18. Kielpinski, D., Monroe, C., Wineland, D.J.: Architecture for a large-scale ion-trap quantum computer. Nature 417(6890), 709–711 (2002)

    Article  ADS  Google Scholar 

  19. Bowler, R., Gaebler, J., Lin, Y., Tan, T.R., Hanneke, D., Jost, J.D., Home, J.P., Leibfried, D., Wineland, D.J.: Coherent diabatic ion transport and separation in a multizone trap array. Phys. Rev. Lett. 109, 080502 (2012)

    Article  ADS  Google Scholar 

  20. Walther, A., Ziesel, F., Ruster, T., Dawkins, S.T., Ott, K., Hettrich, M., Singer, K., Schmidt-Kaler, F., Poschinger, U.: Controlling fast transport of cold trapped ions. Phys. Rev. Lett. 109, 080501 (2012)

    Article  ADS  Google Scholar 

  21. Duan, L.-M., Madsen, M.J., Moehring, D.L., Maunz, P., Kohn, R.N., Monroe, C.: Probabilistic quantum gates between remote atoms through interference of optical frequency qubits. Phys. Rev. A 73(6), 062324 (2006)

    Article  ADS  Google Scholar 

  22. Moehring, D.L., Maunz, P., Olmschenk, S., Younge, K.C., Matsukevich, D.N., Duan, L.-M., Monroe, C.: Entanglement of single-atom quantum bits at a distance. Nature 449(7158), 68–71 (2007)

    Article  ADS  Google Scholar 

  23. Duan, L.-M., Monroe, C.: Quantum networks with trapped ions. Rev. Mod. Phys. 82(2), 1209–1224 (2010)

    Article  ADS  Google Scholar 

  24. Northup, T.E., Blatt, R.: Quantum information transfer using photons. Nat Photon 8(5), 356–363 (2014)

    Article  ADS  Google Scholar 

  25. Monroe, C., Raussendorf, R., Ruthven, A., Brown, K.R., Maunz, P., Duan, L.-M., Kim, J.: Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014)

    Article  ADS  Google Scholar 

  26. Hucul, D., Inlek, I.V., Vittorini, G., Crocker, C., Debnath, S., Clark, S.M., Monroe, C.: Modular entanglement of atomic qubits using photons and phonons. Nat Phys 11(1), 37–42 (2015)

    Article  Google Scholar 

  27. Wineland, D.J., Monroe, C., Itano, W.M., Leibfried, D., King, B.E., Meekhof, D.M.: Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl. Inst. Stand. Tech. 103, 259 (1998)

    Article  MATH  Google Scholar 

  28. Leibfried, D., Blatt, R., Monroe, C., Wineland, D.: Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75(1), 281–324 (2003)

    Article  ADS  Google Scholar 

  29. Lin, G.-D., Zhu, S.-L., Islam, R., Kim, K., Chang, M.-S., Korenblit, S., Monroe, C., Duan, L.-M.: Large-scale quantum computation in an anharmonic linear ion trap. Europhys. Lett. 86(6), 60004 (5pp) (2009)

    Article  ADS  Google Scholar 

  30. Zhu, S.-L., Monroe, C., Duan, L.M.: Trapped ion quantum computation with transverse phonon modes. Phys. Rev. Lett. 97(5), 050505 (2006)

    Article  ADS  Google Scholar 

  31. Larson, D.J., Bergquist, J.C., Bollinger, J.J., Itano, W.M., Wineland, D.J.: Sympathetic cooling of trapped ions: a laser-cooled two-species nonneutral ion plasma. Phys. Rev. Lett. 57(1), 70–73 (1986)

    Article  ADS  Google Scholar 

  32. Kielpinski, D., King, B.E., Myatt, C.J., Sackett, C.A., Turchette, Q.A., Itano, W.M., Monroe, C., Wineland, D.J., Zurek, W.H.: Sympathetic cooling of trapped ions for quantum logic. Phys. Rev. A 61(3), 032310 (2000)

    Article  ADS  Google Scholar 

  33. Barrett, M.D., DeMarco, B., Schaetz, T., Meyer, V., Leibfried, D., Britton, J., Chiaverini, J., Itano, W.M., Jelenković, B., Jost, J.D., Langer, C., Rosenband, T., Wineland, D.J.: Sympathetic cooling of \({}^{9}{{\rm Be}}^{+}\) and \({}^{24}{{\rm Mg}}^{+}\) for quantum logic. Phys. Rev. A 68(4), 042302 (2003)

    Article  ADS  Google Scholar 

  34. Home, J.P., McDonnell, M.J., Szwer, D.J., Keitch, B.C., Lucas, D.M., Stacey, D.N., Steane, A.M.: Memory coherence of a sympathetically cooled trapped-ion qubit. Phys. Rev. A 79(5), 050305 (2009)

    Article  ADS  Google Scholar 

  35. Brown, K.R., Ospelkaus, C., Colombe, Y., Wilson, A.C., Leibfried, D., Wineland, D.J.: Coupled quantized mechanical oscillators. Nature 471(7337), 196–199 (2011)

    Article  ADS  Google Scholar 

  36. Lin, G.-D., Duan, L.-M.: Equilibration and temperature distribution in a driven ion chain. New J. Phys. 13, 075015 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NBRPC 2011CBA00302, the IARPA MUSIQC program, the AFOSR and the ARO MURI program, and the support from National Taiwan University under Grants No. NTU-ERP-103R891401, NTU-ERP-103R891402, and NTU-ERP-103R104021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guin-Dar Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, GD., Duan, LM. Sympathetic cooling in a large ion crystal. Quantum Inf Process 15, 5299–5313 (2016). https://doi.org/10.1007/s11128-015-1161-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1161-3

Keywords

Navigation