Skip to main content
Log in

Syndrome measurement order for the [[7,1,3]] quantum error correction code

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this work, we explore the accuracy of quantum error correction depending of the order of the implemented syndrome measurements. CSS codes require that bit-flip and phase-flip syndromes be measured separately. To comply with fault-tolerant demands and to maximize accuracy, this set of syndrome measurements should be repeated allowing for flexibility in the order of their implementation. We examine different possible orders of Shor-state and Steane-state syndrome measurements for the [[7,1,3]] quantum error correction code. We find that the best choice of syndrome order, determined by the fidelity of the state after noisy error correction, will depend on the error environment. We also compare the fidelity when syndrome measurements are done with Shor states versus Steane states and find that Steane states generally, but not always, lead to final states with higher fidelity. Together, these results allow a quantum computer programmer to choose the optimal syndrome measurement scheme based on the system’s error environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nielsen, M., Chuang, I.: Quantum Information and Computation. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995)

    Article  ADS  Google Scholar 

  3. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996)

    Article  ADS  Google Scholar 

  4. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Preskill, J.: Reliable quantum computers. Proc. Roy. Soc. Lond. A 454, 385–410 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. In Proceedings of the 35th Annual Symposium on Fundamentals of Computer Science, IEEE Press, Los Alamitos (1996)

  7. Gottesman, D.: Theory of fault-tolerant quantum computation. Phys. Rev. A 57, 127–137 (1998)

    Article  ADS  Google Scholar 

  8. Aleferis, P., Gottesman, D., Preskill, J.: Quantum accuracy threshold for concatenated distance-3 code. Quant. Inf. Comput. 6, 97–165 (2006)

    MATH  Google Scholar 

  9. Steane, A.: Multiple particle interference and quantum error correction. Proc. Roy. Soc. Lond. A 452, 2551–2577 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Weinstein, Y.S., Buchbinder, S.D.: Use of Shor states for the [7,1,3] quantum error-correcting code. Phys. Rev. A 86, 052336 (2012)

    Article  ADS  Google Scholar 

  11. Weinstein, Y.S.: Syndrome measurement strategies for the [[7,1,3]] code. Quant. Inf. Proc. 14, 1841–1854 (2015)

  12. Aggarwal, V., Calderbank, A.R., Gilbert, G., Weinstein, Y.S.: Volume thresholds for quantum fault tolerance. Quant. Inf. Proc. 9, 541 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Aliferis, P., Preskill, J.: Fault-tolerant quantum computation against biased noise. Phys. Rev. A 78, 052331 (2008)

    Article  ADS  Google Scholar 

  14. Weinstein, Y.S.: Non-fault-tolerant T gates for the [7,1,3] quantum error-correction code. Phys. Rev. A 87, 032320 (2013)

    Article  ADS  Google Scholar 

  15. Weinstein, Y.S.: Quantum-error-correction implementation after multiple gates. Phys. Rev. A 88, 012325 (2013)

    Article  ADS  Google Scholar 

  16. Weinstein, Y.S.: Quantum error correction during 50 gates. Phys. Rev. A 89, 020301(R) (2014)

    Article  ADS  Google Scholar 

  17. Weinstein, Y.S.: Fidelity of an encoded [7,1,3] logical zero. Phys. Rev. A 84, 012323 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research is supported under the MITRE Innovation Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaakov S. Weinstein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weinstein, Y.S. Syndrome measurement order for the [[7,1,3]] quantum error correction code. Quantum Inf Process 15, 1263–1271 (2016). https://doi.org/10.1007/s11128-015-1068-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1068-z

Keywords

Navigation