Skip to main content
Log in

Improving ancilla states for quantum computation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We analyze the improvement in output state fidelity upon improving the construction accuracy of ancilla states. Specifically, we simulate gates and syndrome measurements on a single qubit of information encoded into the [[7,1,3]] quantum error correction code and determine the output state fidelity as a function of the accuracy with which Shor states (for syndrome measurements) and magic states (to implement T-gates) are constructed. When no syndrome measurements are applied during the gate sequence, we observe that the fidelity increases after performance of a T-gate and improving magic states construction slows the fidelity decay rate. In contrast, when syndrome measurements are applied, loss of fidelity occurs primarily after the syndrome measurements taken after a T-gate. Improving magic state construction slows the fidelity decay rate, and improving Shor state construction raises the initial fidelity but does not slow the fidelity decay rate. Along the way, we show that applying syndrome measurements after every gate does not maximize the output state fidelity. Rather, syndrome measurements should be applied sparingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nielsen, M., Chuang, I.: Quantum Information and Computation. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Preskill, J.: Reliable quantum computers. Proc. R. Soc. Lond. A 454, 385–410 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Gottesman, D.: Theory of fault-tolerant quantum computation. Phys. Rev. A 57, 127–137 (1998)

    Article  ADS  Google Scholar 

  4. Aleferis, P., Gottesman, D., Preskill, J.: Quantum accuracy threshold for concatenated distance-3 code. Quantum Inf. Comput. 6, 97–165 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995)

    Article  ADS  Google Scholar 

  6. Steane, A.: Multiple particle interference and quantum error correction. Proc. R. Soc. Lond. A 452, 2551–2577 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996)

    Article  ADS  Google Scholar 

  8. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Bravyi, S., Kitaev, A.: Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys. Rev. A 71, 022316 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. In: Proceedings of the 35th Annual Symposium on Fundamentals of Computer Science. IEEE Press, Los Alamitos (1996)

  11. Kliuchnikov, V., Maslov, D., Mosca, M.: Asymptotically optimal approximation of single qubit unitaries by Clifford and T circuits using a constant number of ancillary qubits. Phys. Rev. Lett. 110, 190502 (2013)

    Article  ADS  Google Scholar 

  12. Selinger, P.: Efficient Clifford\(+\)T approximation of single-qubit operators. Quantum Inf. Comp. 15, 159–180 (2015)

    MathSciNet  Google Scholar 

  13. Kliuchnikov, V., Maslov, D., Mosca, M.: Practical approximation of single-qubit unitaries by single-qubit quantum Clifford and T circuits. arXiv:1212.6964

  14. Weinstein, Y.S.: Fidelity of an encoded [7,1,3] logical zero. Phys. Rev. A 84, 012323 (2011)

    Article  ADS  Google Scholar 

  15. Buchbinder, S.D., Huang, C.L., Weinstein, Y.S.: Encoding an arbitrary state in a [7,1,3] quantum error correction code. Quantum Inf. Proc. 12, 699–719 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Weinstein, Y.S.: Non-fault-tolerant T gates for the [7,1,3] quantum error-correction code. Phys. Rev. A 87, 032320 (2013)

    Article  ADS  Google Scholar 

  17. Weinstein, Y.S., Buchbinder, S.D.: Use of Shor states for the [7,1,3] quantum error-correcting code. Phys. Rev. A 86, 052336 (2012)

    Article  ADS  Google Scholar 

  18. Weinstein, Y.S.: Quantum-error-correction implementation after multiple gates. Phys. Rev. A 88, 012325 (2013)

    Article  ADS  Google Scholar 

  19. Weinstein, Y.S.: Quantum error correction during 50 gates. Phys. Rev. A 89, 020301(R) (2014)

    Article  ADS  Google Scholar 

  20. Whitney, M.G., Isailovic, N., Patel, Y., Kubiatowicz, J.: A fault tolerant, area efficient architecture for Shor’s factoring algorithm. In: Proceedings of the 36th Annual International Symposium on Computer Architecture. ACM, New York (2009)

Download references

Acknowledgments

The authors would like to thank G. Gilbert, S. Pappas, and D. Stack for insightful comments. This research is supported under the MITRE Innovation Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaakov S. Weinstein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weinstein, Y.S., Chai, D. & Xie, N. Improving ancilla states for quantum computation. Quantum Inf Process 15, 1445–1453 (2016). https://doi.org/10.1007/s11128-015-1225-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1225-4

Keywords

Navigation