Skip to main content
Log in

Exciton-mediated quantum search on a star graph

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A fast and efficient quantum search algorithm is established by using the ability of an exciton to propagate along a star graph that exhibits two identical energetic defects. The first defect lies on the well-defined input site where the exciton is initially created, whereas the second defect occupies the target site whose unknown position must be determined. It is shown that when the energetic defects are judiciously chosen, specific quantum interferences arise so that the probability to observe the exciton on the target site becomes close to unity at a very short time \(t^{*}\). Consequently, a measurement of the exciton quantum state at time \(t^{*}\) will reveal the identity of the position of the target site. The key point is that \(t^{*}\) is the shortest time independent on the size of the graph that is physically accessible to the exciton to tunnel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467 (1982)

    Article  MathSciNet  Google Scholar 

  2. Deutsch, D.: Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400, 97 (1985)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Shor, P.W.: Algorithms for quantum computation discrete log and factoring. In: Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, Los Alamos, p. 20 (1994)

  4. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, pp. 212–219. ACM Press, New York (1996)

  6. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)

    Article  ADS  Google Scholar 

  7. Roland, J., Cerf, N.J.: Quantum search by local adiabatic evolution. Phys. Rev. A 65, 042308 (2002)

    Article  ADS  Google Scholar 

  8. Dowling, J.P.: Quantum information: To compute or not to compute? Nature (London) 439, 919 (2006)

    Article  ADS  Google Scholar 

  9. Daems, D., Guerin, S.: Adiabatic quantum search scheme with atoms in a cavity driven by lasers. Phys. Rev. Lett. 99, 170503 (2007)

    Article  ADS  Google Scholar 

  10. Farhi, E., Gutmann, S.: Analog analogue of a digital quantum computation. Phys. Rev. A 57, 2403 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  11. Childs, A.M., Goldstone, J.: Spatial search by quantum walk. Phys. Rev. A 70, 022314 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  12. Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67, 052307 (2003)

    Article  ADS  Google Scholar 

  13. Szegedy, M.: Quantum speed-up of markov chain based algorithms. In: Proceedings of the 45th IEEE Symposium on Foundations of Computer Science p. 32. IEEE Computer Society, Washington, DC (2004)

  14. Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: Proceedings of the 16th ACM–SIAM Symposium on Discrete Algorithms p. 1099. Society for Industrial and Applied Mathematics, Philadelphia (2005)

  15. Santha, M.: Quantum walk based search algorithms. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) Proceedings of the Fifth International Conference on Theory and Applications of Models of Computation, TAMC 2008, Xi’an, China, 2008. Lecture Notes in Computer Science, p. 31. Springer, Berlin (2008)

    Google Scholar 

  16. Reitzner, D., Hillery, M., Feldman, E., Buzek, V.: Quantum searches on highly symmetric graphs. Phys. Rev. A 79, 012323 (2009)

    Article  ADS  Google Scholar 

  17. Kahou, M.E., Feder, D.L.: Quantum search with interacting Bose–Einstein condensates. Phys. Rev. A 88, 032310 (2013)

    Article  ADS  Google Scholar 

  18. Kahou, M.E.: Spatial search via non-linear quantum walk. Ph.D. Thesis, Department of Physics and Astronomy, Calgary (2013)

  19. Merris, R.: Laplacian matrices of graphs: a survey. Linear Algebra Appl. 197198, 143 (1994)

    Article  MathSciNet  Google Scholar 

  20. Agliari, E., Blumen, A., Mulken, O.: Quantum-walk approach to searching on fractal structures. Phys. Rev. A 82, 012305 (2010)

    Article  ADS  Google Scholar 

  21. Thilagam, A.: Grover-like search via Frenkel-exciton trapping mechanism. Phys. Rev. A 81, 032309 (2010)

    Article  ADS  Google Scholar 

  22. Pouthier, V.: Vibrational exciton mediated quantum state transfer: simple model. Phys. Rev. B 85, 214303 (2012)

    Article  ADS  Google Scholar 

  23. Pouthier, V.: Vibrons in finite size molecular lattices: a route for high-fidelity quantum state transfer at room temperature. J. Phys. Condens. Matter 24, 445401 (2012)

    Article  ADS  Google Scholar 

  24. Mulken, O., Bierbaum, V., Blumen, A.: Coherent exciton transport in dendrimers and continuous-time quantum walks. J. Chem. Phys. 124, 124905 (2006)

    Article  ADS  Google Scholar 

  25. Mulken, O., Blumen, A.: Continuous-time quantum walks: models for coherent transport on complex networks. Phys. Rep. 502, 37 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  26. Pouthier, V.: Exciton localization–delocalization transition in an extended dendrimer. J. Chem. Phys. 139, 234111 (2013)

    Article  ADS  Google Scholar 

  27. Pouthier, V.: Disorder-enhanced exciton delocalization in an extended dendrimer. Phys. Rev. E 90, 022818 (2014)

    Article  ADS  Google Scholar 

  28. Pouthier, V.: The excitonic qubit on a star graph: dephasing-limited coherent motion. Quantum Inf. Process 14, 491 (2015)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. Salimi, S.: Continuous-time quantum walks on star graphs. Ann. Phys. 324, 1185 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. Xu, X.P.: Exact analytical results for quantum walks on star graphs. J. Phys. A Math. Theor. 42, 115205 (2009)

    Article  ADS  Google Scholar 

  31. Ziletti, A., Borgonovi, F., Celardo, G.L., Izrailev, F.M., Kaplan, L., Zelevinsky, V.G.: Coherent transport in multibranch quantum circuits. Phys. Rev. B 85, 052201 (2012)

    Article  ADS  Google Scholar 

  32. Anishchenko, A., Blumen, A., Mulken, O.: Enhancing the spreading of quantum walks on star graphs by additional bonds. Quantum Inf. Process 11, 1273 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  33. Xu, X.P.: Coherent exciton transport and trapping on long-range interacting cycles. Phys. Rev. E 79, 011117 (2009)

    Article  ADS  Google Scholar 

  34. Mulken, O., Blumen, A.: Efficiency of quantum and classical transport on graphs. Phys. Rev. E 73, 066117 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  35. Wagner, M.: Unitary Transformations in Solid State Physics. North-Holland, Amsterdam (1986)

    Google Scholar 

  36. Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G.: Atom–Photon Interactions: Basic Processes and Applications. Wiley, New York (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Pouthier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pouthier, V. Exciton-mediated quantum search on a star graph. Quantum Inf Process 14, 3139–3159 (2015). https://doi.org/10.1007/s11128-015-1043-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1043-8

Keywords

Navigation