Skip to main content

Advertisement

Log in

Long-term light adaptation of light-harvesting and energy-transfer processes in the glaucophyte Cyanophora paradoxa under different light conditions

  • Research
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

In response to fluctuation in light intensity and quality, oxygenic photosynthetic organisms modify their light-harvesting and excitation energy-transfer processes to maintain optimal photosynthetic activity. Glaucophytes, which are a group of primary symbiotic algae, possess light-harvesting antennas called phycobilisomes (PBSs) consistent with cyanobacteria and red algae. However, compared with cyanobacteria and red algae, glaucophytes are poorly studied and there are few reports on the regulation of photosynthesis in the group. In this study, we examined the long-term light adaptation of light-harvesting functions in a glaucophyte, Cyanophora paradoxa, grown under different light conditions. Compared with cells grown under white light, the relative number of PBSs to photosystems (PSs) increased in blue-light-grown cells and decreased in green-, yellow-, and red-light-grown cells. Moreover, the PBS number increased with increment in the monochromatic light intensity. More energy was transferred from PBSs to PSII than to PSI under blue light, whereas energy transfer from PBSs to PSII was reduced under green and yellow lights, and energy transfer from the PBSs to both PSs decreased under red light. Decoupling of PBSs was induced by intense green, yellow, and red lights. Energy transfer from PSII to PSI (spillover) was observed, but the contribution of the spillover did not distinctly change depending on the culture light intensity and quality. These results suggest that the glaucophyte C. paradoxa modifies the light-harvesting abilities of both PSs and excitation energy-transfer processes between the light-harvesting antennas and both PSs during long-term light adaption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data generated or analyzed during the current study are included in this published article and are available from the corresponding author on reasonable request.

Abbreviations

APC:

Allophycocyanin

Car:

Carotenoid

Chl:

Chlorophyll

FDA:

Fluorescence decay-associated

LED:

Light-emitting diodes

LHC:

Light-harvesting chlorophyll-protein complex

PBS:

Phycobilisome

PC:

Phycocyanin

PE:

Phycoerythrin

PS:

Photosystem

RC:

Reaction center

TRF:

Time-resolved fluorescence

References

  • Adir N, Bar-Zvi S, Harris D (2020) The amazing phycobilisome. Biochim Biophys Acta, Bioenerg 1861:148047

    Article  CAS  PubMed  Google Scholar 

  • Akhtar P, Biswas A, Balog-Vig F, Domonkos I, Kovács L, Lambrev PH (2022) Trimeric photosystem I facilitates energy transfer from phycobilisomes in Synechocystis sp. PCC 6803. Plant Physiol 189:827–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akimoto S, Yokono M, Hamada F, Teshigahara A, Aikawa S, Kondo A (2012) Adaptation of light-harvesting systems of Arthrospira platensis to light conditions, probed by time-resolved fluorescence spectroscopy. Biochim Biophys Acta, Bioenerg 1817:1483–1489

    Article  CAS  Google Scholar 

  • Akimoto S, Yokono M, Aikawa S, Kondo A (2013) Modification of energy-transfer processes in the cyanobacterium, Arthrospira platensis, to adapt to light conditions, probed by time-resolved fluorescence spectroscopy. Photosynth Res 117:235–243

    Article  CAS  PubMed  Google Scholar 

  • Akimoto S, Ueno Y, Yokono M, Shen J-R, Nagao R (2020) Adaptation of light-harvesting and energy-transfer processes of a diatom Chaetoceros gracilis to different light qualities. Photosynth Res 146:87–93

    Article  CAS  PubMed  Google Scholar 

  • Andrizhiyevskaya EG, Chojnicka A, Bautista JA, Diner BA, van Grondelle R, Dekker JP (2005) Origin of the F685 and F695 fluorescence in photosystem II. Photosynth Res 35:44–180

    Google Scholar 

  • Biggins J, Bruce D (1989) Regulation of excitation energy transfer in organisms containing phycobilins. Photosynth Res 20:1–34

    Article  CAS  PubMed  Google Scholar 

  • Blankenship RE (2021) Molecular mechanisms of photosynthesis, 3rd edn. Wiley

    Google Scholar 

  • Burki F, Roger AJ, Brown MW, Simpson AGB (2020) The new tree of eukaryotes. Trends Ecol Evol 35:43–55

    Article  CAS  PubMed  Google Scholar 

  • Burnap RL, Trench RK (1989) The biogenesis of the cyanellae of Cyanophora paradoxa. I. Polypeptide composition of the cyanellae. Proc R Soc Lond B Biol Sci 238:53–72

    Article  CAS  PubMed  Google Scholar 

  • Campbell D (1996) Complementary chromatic adaptation alters photosynthetic strategies in the cyanobacterium Calothrix. Microbiology 142:1255–1263

    Article  CAS  PubMed  Google Scholar 

  • Chapman DJ (1966) The pigments of the symbiotic algae (cyanomes) of Cyanophora paradoxa and Glaucocystis nostochinearum and two Rhodophyceae, Porphyridium aerugineum and Asterocytis ramosa. Arch Mikrobiol 55:17–25

    Article  CAS  Google Scholar 

  • Chukhutsina V, Bersanini L, Aro E-M, van Amerongen H (2015) Cyanobacterial light-harvesting phycobilisomes uncouple from photosystem I during dark-to-light transitions. Sci Rep 5:14193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crepin A, Caffarri S (2018) Functions and evolution of Lhcb isoforms composing LHCII, the major light harvesting complex of photosystem II of green eukaryotic organisms. Curr Protein Pept Sci 19:699–713

    Article  CAS  PubMed  Google Scholar 

  • Croce R, van Amerongen H (2014) Natural strategies for photosynthetic light harvesting. Nat Chem Biol 10:492–501

    Article  CAS  PubMed  Google Scholar 

  • Croce R, van Amerongen H (2020) Light harvesting in oxygenic photosynthesis: structural biology meets spectroscopy. Science 369:2058

    Article  Google Scholar 

  • Cunningham FX Jr, Dennenberg RJ, Mustardy L, Jursinic PA, Gantt E (1989) Stoichiometry of photosystem I, photosystem II, and phycobilisomes in the red alga Porphyridium cruentum as a function of growth irradiance. Plant Physiol 91:1179–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunningham FX Jr, Dennenberg RJ, Jursinic PA, Gantt E (1990) Growth under red light enhances photosystem II relative to photosystem I and phycobilisomes in the red alga Porphyridium cruentum. Plant Physiol 93:888–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dietzel L, Bräutigam K, Pfannschmidt T (2008) Photosynthetic acclimation: state transitions and adjustment of photosystem stoichiometry – functional relationship between short-term and long-term light quality acclimation in plants. FEBS J 275:1080–1088

    Article  CAS  PubMed  Google Scholar 

  • Fathinejad S, Steiner JM, Reipert S, Marchetti M, Allmaier G, Burey SC, Ohnishi N, Fukuzawa H, Löffelhardt W, Bohnert HJ (2008) A carboxysomal carbon-concentrating mechanism in the cyanelles of the ‘coelacanth’ of the algal world, Cyanophora paradoxa? Physiol Plant 133:27–32

    Article  CAS  PubMed  Google Scholar 

  • Fujita Y, Murakami A, Aizawa K, Ohki K (1994) Short-term and long-term adaptation of the photosynthetic apparatus: homeostatic properties of thylakoids. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, pp 677–692

    Chapter  Google Scholar 

  • Furukawa R, Aso M, Fujita T, Akimoto S, Tanaka R, Tanaka A, Yokono M, Takabayashi A (2019) Formation of a PSI–PSII megacomplex containing LHCSR and PsbS in the moss Physcomitrella patens. J Plant Res 132:867–880

    Article  CAS  PubMed  Google Scholar 

  • Ghosh AK, Govindjee (1966) Transfer of the excitation energy in Anacystis nidulans grown to obtain different pigment rations. Biophys J 6:611–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamada F, Murakami A, Akimoto S (2017) Adaptation of divinyl chlorophyll a/b-containing cyanobacterium to different light conditions: three strains of Prochlorococcus marinus. J Phys Chem B 121:9081–9090

    Article  CAS  PubMed  Google Scholar 

  • Hall WT, Claus G (1963) Ultrastructural studies on the blue-green algal symbiont in Cyanophora paradoxa Korschikoff. J Cell Biol 19:551–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humbeck K, Hoffmann B, Senger H (1988) Influence of energy flux and quality of light on the molecular organization of the photosynthetic apparatus in Scenedesmus. Planta 173:205–212

    Article  CAS  PubMed  Google Scholar 

  • Jackson C, Clayden S, Reyes-Prieto A (2015) The Glaucophyta: the blue-green plants in a nutshell. Acta Soc Bot Pol 84:149–165

    Article  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411:909–917

    Article  CAS  PubMed  Google Scholar 

  • Kato K, Nagao R, Ueno Y, Yokono M, Suzuki T, Jiang T-Y, Dohmae N, Akita F, Akimoto S, Miyazaki N, Shen J-R (2022) Structure of a tetrameric photosystem I from a glaucophyte alga Cyanophora paradoxa. Nat Commun 13:1679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawamura M, Mimuro M, Fujita Y (1979) Quantitative relationship between two reaction centers in the photosynthetic system of blue-green algae. Plant Cell Physiol 20:697–705

    CAS  Google Scholar 

  • Kehoe DM, Grossman AR (1996) Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors. Science 273:1409–1412

    Article  CAS  PubMed  Google Scholar 

  • Khatypov RA, Khmelnitskiy AY, Leonova MM, Vasilieva LG, Shuvalov VA (2008) Primary light-energy conversion in tetrameric chlorophyll structure of photosystem II and bacterial reaction centers: I. A review. Photosynth Res 98:81–93

    Article  CAS  PubMed  Google Scholar 

  • Khorobrykh S, Havurinne V, Mattila H, Tyystjärvi E (2020) Oxygen and ROS in photosynthesis. Plants 9:91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirilovsky D (2015) Modulating energy arriving at photochemical reaction centers: orange carotenoid protein-related photoprotection and state transitions. Photosynth Res 126:3–17

    Article  CAS  PubMed  Google Scholar 

  • Koike H, Shibata M, Yasutomi K, Kashino Y, Satoh K (2000) Identification of photosystem I components from a glaucocystophyte, Cyanophora paradoxa: the PsaD protein has an N-terminal stretch homologous to higher plants. Photosynth Res 65:207–217

    Article  CAS  PubMed  Google Scholar 

  • Ley AC, Butler WL (1980) Effects of chromatic adaptation on the photochemical apparatus of photosynthesis in Porphyridium cruentum. Plant Physiol 65:714–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Zhang H, Niedzwiedzki DM, Parado M, He G, Gross ML, Blankenship RE (2013) Phycobilisomes supply excitations to both photosystems in a megacomplex in cyanobacteria. Science 342:1104–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L-N, Elmalk AT, Aartsma TJ, Thomas J-C, Lamers GEM, Zhou B-C, Zhang Y-Z (2008) Light-induced energetic decoupling as a mechanism for phycobilisome-related energy dissipation in red algae: a single molecule study. PLoS ONE 3:e3134

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428:287–292

    Article  CAS  PubMed  Google Scholar 

  • Luimstra VM, Schuurmans JM, Verschoor AM, Hellingwerf KJ, Huisman J, Matthijs HCP (2018) Blue light reduces photosynthetic efficiency of cyanobacteria through an imbalance between photosystem I and II. Photosynth Res 138:177–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mangeney E, Gibbs SP (1987) Immunocytochemical localization of ribulose-1,5-bisphosphate carboxylase/oxygenase in the cyanelles of Cyanophora paradoxa and Glaucocystis nostochinearum. Eur J Cell Biol 43:65–70

    CAS  Google Scholar 

  • Manodori A, Melis A (1986) Cyanobacterial acclimation to photosystem I or photosystem II light. Plant Physiol 82:185–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melis A, Murakami A, Nemson JA, Aizawa K, Ohki K, Fujita Y (1996) Chromatic regulation in Chlamydomonas reinhardtii alters photosystem stoichiometry and improves the quantum efficiency of photosynthesis. Photosynth Res 47:253–265

    Article  CAS  PubMed  Google Scholar 

  • Mimuro M, Akimoto S, Tomo T, Yokono M, Miyashita H, Tsuchiya T (2007) Delayed fluorescence observed in the nanosecond time region at 77 K originates directly from the photosystem II reaction center. Biochim Biophys Acta, Bioenerg 1767:327–334

    Article  CAS  Google Scholar 

  • Misumi M, Sonoike K (2017) Characterization of the influence of chlororespiration on the regulation of photosynthesis in the glaucophyte Cyanophora paradoxa. Sci Rep 7:46100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neale PJ, Melis A (1986) Algal photosynthetic membrane complexes and the photosynthesis-irradiance curve: a comparison of light-adaptation responses in Chlamydomonas reinhardtii (Chlorophyta). J Phycol 22:531–538

    Article  CAS  Google Scholar 

  • Oka K, Ueno Y, Yokono M, Shen J-R, Nagao R, Akimoto S (2020) Adaptation of light-harvesting and energy-transfer processes of a diatom Phaeodactylum tricornutum to different light qualities. Photosynth Res 146:227–234

    Article  CAS  PubMed  Google Scholar 

  • Price DC, Chan CX, Yoon HS, Yang EC, Qiu H, Weber APM, Schwacke R, Gross J, Blouin NA, Lane C, Reyes-Prieto A, Durnford DG, Neilson JAD, Lang BF, Burger G, Steiner JM, Löffelhardt W, Meuser JE, Posewitz MC, Ball S, Arias MC, Henrissat B, Coutinho PM, Rensing SA, Symeonidi A, Doddapaneni H, Green BR, Rajah VD, Boore J, Bhattacharya D (2012) Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants. Science 335:843–847

    Article  CAS  PubMed  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Stadnichuk IN, Tropin IV (2017) Phycobiliproteins: structure, functions and biotechnological applications. Appl Biochem Microbiol 53:1–10

    Article  CAS  Google Scholar 

  • Schmidt V, Kies L, Weber A (1979) Die Pigments von Cyanophora paradoxa, Gloechaete wittrockiana and Glaucocystis nostochinearum. Arch Protistenk 122:164–170

    Article  CAS  Google Scholar 

  • Shibata M, Kashino Y, Satoh K, Koike H (2001) Isolation and characterization of oxygen-evolving thylakoid membranes and photosystem II particles from a glaucocystophyte, Cyanophora paradoxa. Plant Cell Physiol 42:733–741

    Article  CAS  PubMed  Google Scholar 

  • Shuvalov VA, Yakovlev AG, Vasilieva LG, Shkuropatov AY (2006) Primary charge separation between P700* and the primary electron acceptor complex A-A0: a comparison with bacterial reaction centers. In: Golbeck JH (ed) Photosystem I: the light-driven plastocyanin: ferredoxin oxidoreductase. Springer, Dordrecht, pp 291–300

    Chapter  Google Scholar 

  • Ueno Y, Aikawa S, Kondo A, Akimoto S (2015) Light adaptation of the unicellular red alga Cyanidioschyzon merolae, probed by time-resolved fluorescence spectroscopy. Photosynth Res 125:211–218

    Article  CAS  PubMed  Google Scholar 

  • Ueno Y, Aikawa S, Niwa K, Abe T, Murakami A, Kondo A, Akimoto S (2017) Variety in excitation energy transfer processes from phycobilisomes to photosystems I and II. Photosynth Res 133:235–243

    Article  CAS  PubMed  Google Scholar 

  • Ueno Y, Shimakawa G, Miyake C, Akimoto S (2018) Light-harvesting strategy during CO2-dependent photosynthesis in the green alga Chlamydomonas reinhardtii. J Phys Chem Lett 9:1028–1033

    Article  CAS  PubMed  Google Scholar 

  • Ueno Y, Aikawa S, Kondo A, Akimoto S (2019) Adaptation of light-harvesting functions of unicellular green algae to different light qualities. Photosynth Res 139:145–154

    Article  CAS  PubMed  Google Scholar 

  • Ueno Y, Shimakawa G, Aikawa S, Miyake C, Akimoto S (2020) Photoprotection mechanisms under different CO2 regimes during photosynthesis in a green alga Chlorella variabilis. Photosynth Res 144:397–407

  • Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60

    Article  CAS  PubMed  Google Scholar 

  • Tamary E, Kiss V, Nevo R, Adam Z, Bernát G, Rexroth S, Rögner M, Reich Z (2012) Structural and functional alterations of cyanobacterial phycobilisomes induced by high-light stress. Biochim Biophys Acta, Bioenerg 1817:319–327

    Article  CAS  Google Scholar 

  • Watanabe M, Sato M, Kondo K, Narikawa R, Ikeuchi M (2012) Phycobilisome model with novel skeleton-like structures in a glaucocystophyte Cyanophora paradoxa. Biochim Biophys Acta, Bioenerg 1777:1428–1435

    Article  Google Scholar 

  • Wiltbank LB, Kehoe DM (2019) Diverse light responses of cyanobacteria mediated by phytochrome superfamily photoreceptors. Nat Rev Microbiol 17:37–50

    Article  CAS  PubMed  Google Scholar 

  • Yokono M, Akimoto S, Koyama K, Tsuchiya T, Mimuro M (2008) Energy transfer Processes in Gloeobacter violaceus PCC 7421 that possesses phycobilisomes with a unique morphology. Biochim Biophys Acta, Bioenerg 1777:55–65

    Article  CAS  Google Scholar 

  • Yokono M, Takabayashi A, Akimoto S, Tanaka A (2015) A megacomplex composed of both photosystem reaction centres in higher plants. Nat Commun 6:6675

    Article  CAS  PubMed  Google Scholar 

  • Yokono M, Takabayashi A, Kishimoto J, Fujita T, Iwai M, Murakami A, Akimoto S, Tanaka A (2019) The PSI–PSII megacomplex in green plants. Plant Cell Physiol 60:1098–1108

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Ryo Nagao (Shizuoka University) for his valuable advices about the cultivation. We thank Robert McKenzie, PhD, from Edanz (https://jp.edanz.com/ac), for editing a draft of this manuscript. This work was supported by JSPS KAKENHI Grant Numbers JP18J10095 (to Y.U.) and JP16H06553 (to S.A.).

Funding

This work was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI (Grant Nos. JP18J10095, JP16H06553).

Author information

Authors and Affiliations

Authors

Contributions

YU and SA: conceived the project; YU: performed the measurements and analyzed the date; SA: supervised the experiments; YU and SA: wrote the manuscript.

Corresponding author

Correspondence to Yoshifumi Ueno.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 10106 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ueno, Y., Akimoto, S. Long-term light adaptation of light-harvesting and energy-transfer processes in the glaucophyte Cyanophora paradoxa under different light conditions. Photosynth Res 159, 165–175 (2024). https://doi.org/10.1007/s11120-023-01029-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-023-01029-7

Keywords

Navigation