Skip to main content
Log in

Oxidative modification of LHC II associated with photosystem II and PS I-LHC I-LHC II membranes

  • Original article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Under aerobic conditions the production of Reactive Oxygen Species (ROS) by electron transport chains is unavoidable, and occurs in both autotrophic and heterotrophic organisms. In photosynthetic organisms both Photosystem II (PS II) and Photosystem I (PS I), in addition to the cytochrome b6/f complex, are demonstrated sources of ROS. All of these membrane protein complexes exhibit oxidative damage when isolated from field-grown plant material. An additional possible source of ROS in PS I and PS II is the distal, chlorophyll-containing light-harvesting array LHC II, which is present in both photosystems. These serve as possible sources of 1O2 produced by the interaction of 3O2 with 3chl* produced by intersystem crossing. We have hypothesized that amino acid residues close to the sites of ROS generation will be more susceptible to oxidative modification than distant residues. In this study, we have identified oxidized amino acid residues in a subset of the spinach LHC II proteins (Lhcb1 and Lhcb2) that were associated with either PS II membranes (i.e. BBYs) or PS I-LHC I-LHC II membranes, both of which were isolated from field-grown spinach. We identified oxidatively modified residues by high-resolution tandem mass spectrometry. Interestingly, two different patterns of oxidative modification were evident for the Lhcb1 and Lhcb2 proteins from these different sources. In the LHC II associated with PS II membranes, oxidized residues were identified to be located on the stromal surface of Lhcb1 and, to a much lesser extent, Lhcb2. Relatively few oxidized residues were identified as buried in the hydrophobic core of these proteins. The LHC II associated with PS I-LHC I-LHC II membranes, however, exhibited fewer surface-oxidized residues but, rather a large number of oxidative modifications buried in the hydrophobic core regions of both Lhcb1 and Lhcb2, adjacent to the chlorophyll prosthetic groups. These results appear to indicate that ROS, specifically 1O2, can modify the Lhcb proteins associated with both photosystems and that the LHC II associated with PS II membranes represent a different population from the LHC II associated with PS I-LHC I-LHC II membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Considering only one Lhcb1 and one Lhcb2 within the trimer.

  2. For a very approximate estimate, consider an LHC II trimer which is not associated with a reaction center (for instance if it were moving between PS II and PS I during State 1 to State 2 transitions). Since each chl absorbs about 10 photons/sec (at 1800 μmoles photons/m2/sec) (Blankenship 2002) and each LHC II trimer contains 42 chl, each LHC II trimer absorbs about 420 photons/sec. If an LHC II trimer has a ½ life of 10 h, it would absorb 1.5 × 107 photons. Assuming the 3chl*-quenching mechanisms (carotenoids, NPQ and LHC II aggregation, etc.) were 99.99% effective at quenching 3chl* and that 10% of the unquenched 3chl* formed 1O2, then ~ 150 1O2 could be formed over the lifetime of the LHC II. LHC II trimers connected to reaction centers would be predicted to produce significantly less 1O2.

References

  • Alboresi A, Ballottari M, Hienerwadel R, Giacometti GM, Morosinotto T (2009) Antenna complexes protect photosystem I from photoinhibition. BMC Plant Biol 9:71

    PubMed  PubMed Central  Google Scholar 

  • Anastassiou R, Argyroudi-Akoyunoglou JH (1995) Thylakoid-bound proteolytic activity against LHC II apoprotein in bean. Photosyn Res 43:241–250

    CAS  Google Scholar 

  • Angelisová P, Ballek O, Sýkora J, Benada O, Čajka T, Pokorná J, Pinkas D, Hořejší V (2019) The use of styrene-maleic acid copolymer (SMA) for studies on T cell membrane rafts. Biochim Biophys Acta 1861:130–141

    Google Scholar 

  • Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 55:539–552

    PubMed  Google Scholar 

  • Austin JR, Staehelin LA (2011) Three-dimensional architecture of grana and stroma thylakoids of higher plants as determined by electron tomography. Plant Physiol 155:1601–1611

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ballottari M, Girardon J, Dall’osto L, Bassi R (2012) Evolution and functional properties of photosystem II light-harvesting complexes in eukaryotes. Biochim Biophys Acta 1817:143–157

    CAS  PubMed  Google Scholar 

  • Bell AJ, Frankel LK, Bricker TM (2015) High yield non-detergent Isolation of photosystem I-light-harvesting chlorophyll II membranes from spinach thylakoids: implications for the organization of the PS I antennae in higher plants. J Biol Chem 290:18429–18437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benson SL, Maheswaran P, Ware MA, Hunter CN, Horton P, Jansson S, Ruban AV, Johnson MP (2015) An intact light-harvesting complex I antenna system is required for complete state transitions in Arabidopsis. Nat Plants 1:15176

    CAS  PubMed  Google Scholar 

  • Berthold DA, Babcock GT, Yocum CF (1981) A highly resolved, oxygen-evolving photosystem II preparation from spinach thylakoid membranes: EPR and electron-transport properties. FEBS Lett 134:231–234

    CAS  Google Scholar 

  • Blankenship RE (2002) Molecular mechanisms of photosynthesis. Blackwell Science, Oxford

    Google Scholar 

  • Boekema EJ, van Roon H, Calkoen F, Bassi R, Dekker JP (1999) Multiple types of association of photosystem II and its light-harvesting antenna in partially solubilized photosystem II membranes. Biochemistry 38:2233–2239

    CAS  PubMed  Google Scholar 

  • Bos I, Bland KM, Tian L, Croce R, Frankel LK, van Amerongen H, Bricker TM, Wientjes E (2017) Multiple LHCII antennae can transfer energy efficiently to a single photosystem I. Biochim Biophys Acta 1858:371–378

    CAS  Google Scholar 

  • Bricker TM (1990) The structure and function of CPa-1 and CPa-2 in photosystem II. Photosynth Res 24:1–13

    CAS  PubMed  Google Scholar 

  • Bricker TM, Frankel LK (2002) The structure and function of CP47 and CP43 in photosystem II. Photosynth Res 72:131–146

    CAS  PubMed  Google Scholar 

  • Bricker TM, Mummadisetti MP, Frankel LK (2015) Recent advances in the use of mass spectrometry to examine structure/function relationships in photosystem II. J Photochem Photobiol B 152:227–246

    CAS  PubMed  Google Scholar 

  • Cao P, Su X, Pan X, Liu Z, Chang W, Li M (2018) Structure, assembly and energy transfer of plant photosystem II supercomplex. Biochim Biophys Acta 1859:633–644

    CAS  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. J Mol Biol Evol 17:540–542

    CAS  Google Scholar 

  • Chevenet F, Brun C, Bañuls A-L, Jacq B, Christen R (2006) TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinform 7:439

    Google Scholar 

  • Choudhary FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90:856–867

    Google Scholar 

  • Chukhutsina VU, Liu X, Xu P, Croce R (2020) Light-harvesting complex II is an antenna of photosystem I in dark-adapted plants. Nat Plants 6:860–868

    CAS  PubMed  Google Scholar 

  • Crepin A, Caffarri S (2015) The specific localizations of phosphorylated Lhcb1 and Lhcb2 isoforms reveal the role of Lhcb2 in the formation of the PSI-LHCII supercomplex in Arabidopsis during state transitions. Biochim Biophys Acta 1847:1539–1548

    CAS  PubMed  Google Scholar 

  • Croce R (2020) Beyond ‘seeing is believing’: the antenna size of the photosystems in vivo. New Phytol 228:1214–1218

    PubMed  PubMed Central  Google Scholar 

  • Croce R, van Amerongen H (2013) Light-harvesting in photosystem I. Photosyn Res 116:153–166

    CAS  Google Scholar 

  • Danielsson R, Albertsson P-Å (2009) Fragmentation and separation analysis of the photosynthetic membrane from spinach. Biochim Biophys Acta 1787:25–36

    CAS  PubMed  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci. https://doi.org/10.3389/fenvs.2014.00053

    Article  Google Scholar 

  • DeLano WL (2002) The PyMOL Molecular Graphics System, Version 1.2r3pre, Schrödinger, LLC.

  • Delepelaire P, Chua N-H (1979) Lithium dodecyl sulfate/polyacrylamide gel electrophoresis of thylakoid membranes at 4 C: characterizations of two additional chlorophyll a-protein complexes. Proc Natl Acad Sci U S A 76:111–115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acid Res 36:W465–W469

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drop B, Webber-Birungi M, Yadav SK, Filipowicz-Szymanska A, Fusetti F, Boekema EJ, Croce R (2014) Light-harvesting complex II (LHCII) and its supramolecular organization in Chlamydomonas reinhardtii. Biochim Biophys Acta 1837:63–72

    CAS  PubMed  Google Scholar 

  • Duchene S, Siegenthaler PA (2000) Do glycerolipids display lateral heterogeneity in the thylakoid membrane? Lipids 35:739–744

    CAS  PubMed  Google Scholar 

  • Dunahay TG, Staehelin LA, Seibert M, Ogilvie PD, Berg SP (1984) Structural, biochemical and biophysical characterization of four oxygen-evolving Photosystem II preparations from spinach. Biochim Biophys Acta 764:179–193

    CAS  Google Scholar 

  • Dupree EJ, Jayathirtha M, Yorkey H, Mihasan M, Petre BA, Darie CC (2020) A critical review of bottom-up proteomics: the good, the bad, and the future of this field. Proteomes. https://doi.org/10.3390/proteomes8030014

    Article  PubMed  PubMed Central  Google Scholar 

  • Foyer CH (2018) Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environ Exp Bot 154:134–142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frankel LK, Sallans L, Limbach PA, Bricker TM (2012) Identification of oxidized amino acid residues in the vicinity of the Mn(4)CaO(5) cluster of photosystem II: implications for the identification of oxygen channels within the photosystem. Biochemistry 51:6371–6377

    CAS  PubMed  Google Scholar 

  • Frankel LK, Sallans L, Bellamy H, Goettert JS, Limbach PA, Bricker TM (2013) Radiolytic mapping of solvent-contact surfaces in photosystem II of higher plants: experimental identification of putative water channels within the photosystem. J Biol Chem 288(32):23565–23572. https://doi.org/10.1074/jbc.M113.487033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frankel LK, Sallans L, Limbach PA, Bricker TM (2013) Oxidized amino acid residues in the vicinity of Q(A) and Pheo(D1) of the photosystem II reaction center: putative generation sites of reducing-side reactive oxygen species. PLoS ONE 8(2):e58042. https://doi.org/10.1371/journal.pone.0058042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galka P, Santabarbara S, Khuong TT, Degand H, Morsomme P, Jennings RC, Boekema EJ, Caffarri S (2012) Functional analyses of the plant photosystem I-light-harvesting complex II supercomplex reveal that light-harvesting complex II loosely bound to photosystem II is a very efficient antenna for photosystem I in state II. Plant Cell 24:2963–2978

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haferkamp S, Haase W, Pascal AA, van Amerongen H, Kirchhoff H (2010) Efficient light harvesting by photosystem II requires an optimized protein packing density in Grana thylakoids. J Biol Chem 285(22):17020–17028. https://doi.org/10.1074/jbc.M109.077750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Havaux M (2013) Carotenoid oxidation products as stress signals in plants. Plant J 79:597–606

    PubMed  Google Scholar 

  • Huang Z, Shen L, Wang W, Mao Z, Yi X, Kuang T, Shen J-R, Zhang X, Han G (2021) Structure of photosystem I-LHCI-LHCII from the green alga Chlamydomonas reinhardtii in state 2. Nature Commun 12:1100. https://doi.org/10.1038/s41467-021-21362-6

    Article  CAS  Google Scholar 

  • Hui Y, Jie W, Carpentier R (2000) Degradation of the photosystem I complex during photoinhibition. Photochem Photobiol 72:508–512

    CAS  PubMed  Google Scholar 

  • Jansson S (1994) The light-harvesting chlorophyll ab-binding proteins. Biochim Biophys Acta 1184:1–19

    CAS  PubMed  Google Scholar 

  • Johnson MP, Ruban AV (2009) Photoprotective energy dissipation in higher plants involves alteration of the excited state energy of the emitting chlorophyll(s) in the light harvesting antenna II (LHCII). J Biol Chem 284:23592–23601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kale R, Hebert AE, Frankel LK, Sallans L, Bricker TM, Pospisil P (2017) Amino acid oxidation of the D1 and D2 proteins by oxygen radicals during photoinhibition of photosystem II. Proc Natl Acad Sci U S A 114:2988–2993

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kale R, Sallans L, Frankel LK, Bricker TM (2020) Natively oxidized amino acid residues in the spinach PS I-LHC I supercomplex. Photosynth Res 143:263–273

    CAS  PubMed  Google Scholar 

  • Kargul J, Turkina MV, Nield J, Benson S, Vener AV, Barber J (2005) Light-harvesting complex II protein CP29 binds to photosystem I of Chlamydomonas reinhardtii under state 2 conditions. FEBS J 272:4797–4806

    CAS  PubMed  Google Scholar 

  • Kumar A, Prasad A, Sedlářová M, Kale R, Frankel LK, Sallans L, Bricker TM, Pospíšil P (2021) Tocopherol controls D1 amino acid oxidation by oxygen radicals in photosystem II. Proc Natl Acad Sci 118(4):e2019246118. https://doi.org/10.1073/pnas.2019246118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyle DJ, Staehelin LA, Arntzen CJ (1983) Lateral mobility of the light-harvesting complex in chloroplast membranes controls excitation energy distribution in higher plants. Arch Biochem Biophys 222:527–541

    CAS  PubMed  Google Scholar 

  • Le Quiniou C, van Oort B, Drop B, van Stokkum HM, Croce R (2015) The high efficiency of Photosystem I in the green alga Chlamydomonas reinhardtii is maintained after the antenna size is substantially increased by the association of light-harvesting complexes II. J Biol Chem 290:30587–30595

    PubMed  PubMed Central  Google Scholar 

  • Lindahl M, Yang D-H, Andersson B (1995) Regulatory proteolysis of the major light-harvesting chlorophyll a/ b protein of photosystem II by a light-induced membrane-associated enzymic system. Eur J Biochem 231:503–509

    CAS  PubMed  Google Scholar 

  • Lingvay M, Akhtar P, Sebők-Nagy K, Páli T, Lambrev PH (2020) Photobleaching of chlorophyll in light-harvesting complex II Increases in lipid environment. Front Plant Sci. https://doi.org/10.3389/fpls.2020.00849

    Article  PubMed  PubMed Central  Google Scholar 

  • Longoni P, Douchi D, Cariti F, Fucile G, Goldschmidt-Clermont M (2015) Phosphorylation of the light-harvesting complex II isoform Lhcb2 Is central to state transitions. Plant Physiol 169:2874–2883

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mazor Y, Borovikova A, Caspy I, Nelson N (2017) Structure of the plant photosystem I supercomplex at 2.6 angstrom resolution. Nat Plants 3:17014

    CAS  PubMed  Google Scholar 

  • Møller B, L., Høj PB, Henry LEA (1984) Electron mcroscopic characteristics of photosystem II preparations and their Iiactivation and reactivation with respect to oxygen evolution. In: Sybesma C (ed) Advances in photosynthesis research: proceedings of the VIth international congress on photosynthesis, Brussels, Belgium, August 1–6, 1983 Vol. 3. Springer Netherlands, Dordrecht, pp 219–222

  • Mozzo M, Dall’Osto L, Hienerwadel R, Bassi R, Croce R (2008) Photoprotection in the antenna complexes of photosystem II: role of individual xanthophylls in chlorophyll triplet quenching. J Biol Chem. https://doi.org/10.1074/jbc.M708961200

    Article  PubMed  Google Scholar 

  • Munro D, Treberg JR (2017) A radical shift in perspective: mitochondria as regulators of reactive oxygen species. J Exp Biol 220:1170–1180

    PubMed  Google Scholar 

  • Natali A, Gruber JM, Dietzel L, Stuart MCA, van Grondelle R, Croce R (2016) Light-harvesting complexes (LHCs) cluster spontaneously in membrane environment leading to shortening of their excited state lifetimes. J Biol Chem 291:16730–16739

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nosek L, Semchonok D, Boekema EJ, Ilik P, Kouril R (2017) Structural variability of plant photosystem II megacomplexes in thylakoid membranes. Plant J 89:104–111

    CAS  PubMed  Google Scholar 

  • Pan X, Ma J, Su X, Cao P, Chang W, Liu Z, Zhang X, Li M (2018) Structure of the maize photosystem I supercomplex with light-harvesting complexes I and II. Science 360:1109–1113

    CAS  PubMed  Google Scholar 

  • Pietrzykowska M, Suorsa M, Semchonok DA, Tikkanen M, Boekema EJ, Aro EM, Jansson S (2014) The light-harvesting chlorophyll a/b binding proteins Lhcb1 and Lhcb2 play complementary roles during state transitions in Arabidopsis. Plant Cell 26(9):3646–3660. https://doi.org/10.1105/tpc.114.127373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabilloud T, Vincon M, Garin J (1995) Micropreparative one-and two-dimensional electrophoresis: improvement with new photopolymerization systems. Electrophoresis 16:1414–1422

    CAS  PubMed  Google Scholar 

  • Rinalducci S, Pedersen JZ, Zolla L (2004) Formation of radicals from singlet oxygen produced during photoinhibition of isolated light-harvesting proteins of photosystem II. Biochim Biophys Acta 1608:63–73

    CAS  PubMed  Google Scholar 

  • Schwarz EM, Tietz S, Froehlich JE (2018) Photosystem I-LHCII megacomplexes respond to high light and aging in plants. Photosynth Res 136:107–124

    CAS  PubMed  Google Scholar 

  • Sievers F, Higgins DG (2018) Clustal Omega for making accurate alignments of many protein sequences. Protein Sci 27:135–145

    CAS  PubMed  Google Scholar 

  • Slovin JP, Tobin EM (1982) Synthesis and turnover of the light-harvesting chlorophyll a/b-protein in Lemna gibba grown with intermittent red light: possible translational control. Planta 154:465–472

    CAS  PubMed  Google Scholar 

  • Staehelin LA, Paolillo DJ (2020) A brief history of how microscopic studies led to the elucidation of the 3D architecture and macromolecular organization of higher plant thylakoids. Photosynth Res 145:237–258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Standfuss J, Terwisscha van Scheltinga AC, Lamborghini M, Kuhlbrandt W (2005) Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 A resolution. EMBO J 24:919–928

    CAS  PubMed  PubMed Central  Google Scholar 

  • Su X, Ma J, Wei X, Cao P, Zhu D, Chang W, Liu Z, Zhang X, Li M (2017) Structure and assembly mechanism of plant C(2)S(2)M(2)-type PSII-LHCII supercomplex. Science 357:815–820

    CAS  PubMed  Google Scholar 

  • Takahashi H, Iwai M, Takahashi Y, Minagawa J (2006) Identification of the mobile light-harvesting complex II polypeptides for state transitions in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 103:477–482

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor RM, Sallans L, Frankel LK, Bricker TM (2018) Natively oxidized amino acid residues in the spinach cytochrome b6f complex. Photosynth Res 137:141–151

    CAS  PubMed  Google Scholar 

  • Triantaphylidès C, Havaux M (2009) Singlet oxygen in plants: production, detoxification and signaling. Trends iPlant Sci 14:219–228

    Google Scholar 

  • Tripathy BC, Oelmüller R (2012) Reactive oxygen species generation and signaling in plants. Plant Signal Behav 7:1621–1633

    CAS  PubMed  PubMed Central  Google Scholar 

  • Urban A, Rogowski P, Wasilewska-Dębowska W, Romanowska E (2020) Effect of light on the rearrangements of PSI super-and megacomplexes in the non-appressed thylakoid domains of maize mesophyll chloroplasts. Plant Science 301:110655

    CAS  PubMed  Google Scholar 

  • van Bezouwen LS, Caffarri S, Kale RS, Kouril R, Thunnissen AWH, Oostergetel GT, Boekema EJ (2017) Subunit and chlorophyll organization of the plant photosystem II supercomplex. Nat Plants 3:17080

    PubMed  Google Scholar 

  • Veerman J, McCommell MD, Vasil’ev S, Mamedov F, Styring S, Bruce D (2007) Functional heterogeneity of photosystem II in domain specific regions of the thylakoid membrane of spinach (Spinacia oleracea L.). Biochemistry 46:3443–3453

    CAS  PubMed  Google Scholar 

  • Wei X, Su X, Cao P, Liu X, Chang W, Li M, Zhang X, Liu Z (2016) Structure of spinach photosystem II-LHCII supercomplex at 3.2 A resolution. Nature 534:69–74

    CAS  PubMed  Google Scholar 

  • Wientjes E, Drop B, Kouril R, Boekema EJ, Croce R (2013) During state 1 to state 2 transition in Arabidopsis thaliana, the photosystem II supercomplex gets phosphorylated but does not disassemble. J Biol Chem 288:32821–32826

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wientjes E, van Amerongen H, Croce R (2013) LHCII is an antenna of both photosystems after long-term acclimation. Biochim Biophys Acta 1827:420–426

    CAS  PubMed  Google Scholar 

  • Xu H, Freitas MA (2009) MassMatrix: a database search program for rapid characterization of proteins and peptides from tandem mass spectrometry data. Proteomics 9(6):1548–1555

    PubMed  PubMed Central  Google Scholar 

  • Yadav KNS, Semchonok DA, Nosek L, Kouřil R, Fucile G, Boekema EJ, Eichacker LA (2017) Supercomplexes of plant photosystem I with cytochrome b6f, light-harvesting complex II and NDH. Biochim Biophys Acta 1858:12–20

    CAS  Google Scholar 

  • Yang D-H, Webster J, Adam Z, Lindahl M, Andersson B (1998) Induction of acclimative proteolysis of the light-harvesting chlorophyll a/b protein of photosystem II in response to elevated light intensities. Plant Physiol 118:827–834

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang D-H, Paulsen H, Andersson B (2000) The N- terminal domain of the light-harvesting chlorophyll a/b-binding protein complex (LHCII) is essential for its acclimative proteolysis. FEBS Lett 466:385–388

    CAS  PubMed  Google Scholar 

  • Zhang R, Sahu ID, Bali AP, Dabney-Smith C, Lorigan GA (2017) Characterization of the structure of lipodisq nanoparticles in the presence of KCNE1 by dynamic light scattering and transmission electron microscopy. Chem Phys Lipids 203:19–23

    CAS  PubMed  Google Scholar 

  • Zolla L, Rinalducci S (2002) Involvement of active oxygen species in degradation of light-harvesting proteins under light stresses. Biochemistry 41:14391–14402

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was solely supported by the United States Department of Energy, Office of Basic Energy Sciences grant DE-FG02-09ER20310 to TMB and LKF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry M. Bricker.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kale, R.S., Seep, J.L., Sallans, L. et al. Oxidative modification of LHC II associated with photosystem II and PS I-LHC I-LHC II membranes. Photosynth Res 152, 261–274 (2022). https://doi.org/10.1007/s11120-022-00902-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-022-00902-1

Keywords

Navigation