Skip to main content
Log in

The ratio of single-turnover to multiple-turnover fluorescence varies predictably with growth rate and cellular chlorophyll in the green alga Dunaliella tertiolecta

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Marine phytoplankton experience a wide range of nutrient and light conditions in nature and respond to these conditions through changes in growth rate, chlorophyll concentration, and other physiological properties. Chlorophyll fluorescence is a non-invasive and efficient tool for characterizing changes in these physiological properties. In particular, the introduction of fast repetition rate fluorometry (FRRf) into studies of phytoplankton physiology has enabled detailed studies of photosynthetic components and kinetics. One property retrieved with an FRRf is the ‘single-turnover’ maximum fluorescence (FmST) when the primary electron acceptor, Qa, is reduced but the plastoquinone (PQ) pool is oxidized. A second retrieved property is the ‘multiple-turnover’ fluorescence (FMT) when both Qa and PQ are reduced. Here, variations in FmST and FMT were measured in the green alga Dunaliella tertiolecta grown under nitrate-limited, light-limited, and replete conditions. The ratio of FmST to FMT (ST/MT) showed a consistent relationship with cellular chlorophyll in D. tertiolecta across all growth conditions. However, the ST/MT ratio decreased with growth rate under nitrate-limited conditions but increased with growth rate under light-limited conditions. In addition, cells from light-limited conditions showed a high accumulation of Qb-nonreducing centers, while cells from nitrate-limited conditions showed little to none. We propose that these findings reflect differences in the reduction and oxidation rates of plastoquinone due to the unique impacts of light and nitrate limitation on the stoichiometry of light-harvesting components and downstream electron acceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agis M, Granda A, Dolan J (2006) A cautionary note: Examples of possible microbial community dynamics in dilution grazing experiments. J Exp Mar Biol Ecol 341:176–183

    Article  Google Scholar 

  • Allen J (2003) State Transitions—a question of balance. Science 299:1530–1531

    Article  CAS  PubMed  Google Scholar 

  • Baker N (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rec Plant Biol 59:89–113

    Article  CAS  Google Scholar 

  • Beardall J, Young E, Roberts S (2001) Approaches for determining phytoplankton nutrient limitation. Aquat Sci 63:44–69

    Article  CAS  Google Scholar 

  • Behrenfeld M, Maranon E, Siegel D, Hooker S (2002) Photoacclimation and nutrient-based model of light-saturated photosynthesis for quantifying oceanic primary production. MEPS 228:103–117

    Article  CAS  Google Scholar 

  • Behrenfeld M, Boss E, Siegel D, Shea D (2005) Carbon-based ocean productivity and phytoplankton physiology from space. Global Biogeochem Cycles 19:GB1006

    Article  CAS  Google Scholar 

  • Behrenfeld M, Westberry T, Boss E, O’Malley R, Siegel D, Wiggert J, Franz B et al (2009) Satellite-detected fluorescence reveals global physiology of ocean phytoplankton. Biogeosciences 6:779–794

    Article  Google Scholar 

  • Berges J, Charlebois D, Mauzerall D, Falkowski P (1996) Differential effects of nitrogen limitation on photosynthetic efficiency of photosystems I and II in microalgae. Plant Physiol 110:689–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaine S, Quenguiner B, Armand L, Belviso S, Bombled B et al (2007) Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature 446:1070–1075

    Article  CAS  Google Scholar 

  • De Bianchi S, Ballottari M, Dall’Ostro L, Bassi R (2010) Regulation of plant light harvesting by thermal dissipation of excess energy. Biochem Soc Trans 38:651–660

    Article  CAS  PubMed  Google Scholar 

  • Diner B, Mauzerall D (1973) The turnover times of photosynthesis and redox properties of the pool of electron carriers between the photosystems. Biochim Biophys 305:353–363

    Article  CAS  Google Scholar 

  • Dubinsky Z, Falkowski P, Wyman K (1986) Light harvesting and utilization by phytoplankton. Plant Cell Physiol 27:7: 1335–1349

    Article  CAS  Google Scholar 

  • Duysens L, Sweers H (1963) Mechanisms of two photochemical reactions in algae as studied by means of fluorescence. In: Japanese Society of Plant Physiologists (ed) Studies of micro-algae and photosynthetic bacteria, special issue of plant and cell physiology. University of Tokyo Press, Tokyo, pp 353–372

  • Echevin V, Aumont O, Ledesma J, Flores G (2008) The seasonal cycle of surface chlorophyll in the Peruvian upwelling system: a modelling study. Prog Oceanogr 79:2–4:167–176

    Article  Google Scholar 

  • Falkowski P, Owens T, Ley A, Mauzerall D (1981) Effects of growth irradiance levels on the ratio of reaction centers in two species of marine phytoplankton. Plant Physiol 68:969–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falkowski P, Dubinsky Z, Wyman K (1985) Growth-irradiance relationships in phytoplankton. Limnol Oceanogr 30:2: 311–321

    Article  CAS  Google Scholar 

  • Falkowski P, Sukenik A, Herzig R (1989) Nitrogen limitation in Isochrysis galbana (Haptophyceae). II. Relative abundane of chlorophlast proteins. J Phycol 25:471–478

    Article  CAS  Google Scholar 

  • Galloway J, Dentener F, Capone D, Boyer E, Howarth R, Seitzinger S et al (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226

    Article  CAS  Google Scholar 

  • Geider R (1987) Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: implications for physiology and growth of phytoplankton. New Phytol 106:1–34

    Article  CAS  Google Scholar 

  • Geider R, Macintyre H, Graziano L, McKay R (1998) Responses of the photosynthetic apparatus of Dunaliella tertiolecta (Chlorophyceae) to nitrogen and phosphorus limitation. Eur J Phycol 33:315–332

    Article  Google Scholar 

  • Graff J, Westberry T, Milligan A, Brown M, Dall’Olmo G, van Dongen-Vogels V, Reifel K, Behrenfeld M (2015) Analytical phytoplankton carbon measurements spanning diverse ecosystems. Deep-Sea Res I 102:16–25

    Article  CAS  Google Scholar 

  • Graff J, Westberry T, Milligan A, Brown M, Dall’Olmo G, Reifel K, Behrenfeld M (2016) Photoacclimation of natural phytoplankton communities. Mar Ecol Prog Ser 542:51–62

    Article  CAS  Google Scholar 

  • Guillard R (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Plenum Press, New York, pp 26–60

    Google Scholar 

  • Guillard R, Ryther J (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can J Microbiol 8:229–239

    Article  CAS  Google Scholar 

  • Halsey K, Milligan A, Behrenfeld M (2010) Physiological optimization underlies growth rate-independent chlorophyll-specific gross and net primary production. Photosynth Res. https://doi.org/10.1007/s11120-009-9526-z

    Article  PubMed  Google Scholar 

  • Halsey K, Milligan A, Behrenfeld M (2011) Linking time-dependent carbon fixation efficiencies in Dunaliella tertiolecta (Chlorophyceae) to underlying metabolic pathways. J Phycol 47:66–76

    Article  CAS  PubMed  Google Scholar 

  • Healey P (1985) Interacting effects of light and nutrient limitation on the growth rate of Synechococcus linearis (Cyanophyceae). J Phycol 21:134–146

    Article  Google Scholar 

  • Jedmowski C, Brüggemann W (2015) Imaging of fast chlorophyll fluorescence induction curve (OJIP) parameters, applied in a screening study with wild barley (Hordeum spontaneum) genotypes under heat stress. J Photochem Photobiol 151:153–160

    Article  CAS  Google Scholar 

  • Joly D, Carpentier R (2008) Sigmoidal reduction kinetics of the photosystems II acceptor side in intact photosynthetic materials during fluorescence induction. Photochem Photobiol Sci 8:167–173

    Article  PubMed  Google Scholar 

  • Joly D, jemaa E, Carpentier R (2010) Redox state of the photosynthetic electron transport chain in wild-type and mutant leaves of Arabidopsis thaliana: Impact on photosystems II fluorescence. J Photochem Photobiol 98:180–187

    Article  CAS  Google Scholar 

  • Jones B, Halsey K, Behrenfeld M (2017) Novel incubation-free approaches to determine phytoplankton net primary productivity, growth, and biomass based on flow cytometry and quantification of ATP and NAD(H). Lim Ocean Meth 15:928–938

    Article  CAS  Google Scholar 

  • Kalaji HM, Oukarroum A, Alexandrov V et al (2014) Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. Plant Physiol Biochem 81:16–25

    Article  CAS  PubMed  Google Scholar 

  • Kautsky H, Hirsch A (1931) Neue Versuche zur Kohlensäureassimilation. Naturwissenschaften 19:964–964

    Article  CAS  Google Scholar 

  • Kolber Z, Prasil O, Falkowski P (1998) Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochim Biophys Acta 1367:88–106

    Article  CAS  PubMed  Google Scholar 

  • Kruskopf M, Flynn K (2005) Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth rate. New Phytol 169:525–536

    Article  CAS  Google Scholar 

  • Laws E, Bannister T (1980) Nutrient- and light-limited growth of Thalassiosira fluviatilis in continuous culture, with implications for phytoplankton growth in the ocean. Limnol Oceanogr 25:3: 457–473

    Article  CAS  Google Scholar 

  • Mitchell B, Brody E, Hom-Hansen O, McClain C, Bishop J (1991) Light limitation of phytoplankton biomass and macronutrient utilization in the Southern Ocean. Limnol Oceanogr 36:8:1662–1677

    Article  Google Scholar 

  • Munday J, Govindjee (1968) Light-induced changes in the fluorescence yield of chlorophyll a in vivo. III. The dip and the peak in the fluorescence transient of Chlorella pyrenoidosa. Biophys J 9:1–21

    Article  Google Scholar 

  • Nogueira P, Domingues R, Barbosa A (2014) Are microcosm volume and sample pre-filtration relevant to evaluate phytoplankton growth? J Exp Mar Biol Ecol 461:323–330

    Article  Google Scholar 

  • Oukarroum A, Strasser RJ, van Staden J (2004) Phenotyping of dark and light adapted barley plants by the fast chlorophyll a fluorescence rise OJIP. S. Afr J Bot 70:277–283

    Article  CAS  Google Scholar 

  • Oukarroum A, Schansker G, Strasser R (2009) Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. Physiol Plant 137:188–199

    Article  CAS  PubMed  Google Scholar 

  • Parkhill J, Maillet G, Cullen J (2001) Fluorescence-based maximal quantum yield for PSII as a diagnostic of nutrient stress. J Phycol 37:517–529

    Article  Google Scholar 

  • Prasil O, Kolber A, Falkowski P (2018) Control of the maximal chlorophyll fluorescence yield by the Qb binding site. Photosynthetica 56:150–162

    Article  CAS  Google Scholar 

  • Rhee G, Gotham I (1981) The effect of environmental factors on phytoplankton growth: light and the interactions of light with nitrate limitation. Limnol Oceanogr 26:4: 649–659

    Article  CAS  Google Scholar 

  • Ritchie R (2006) Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth Res 89:27–41

    Article  CAS  PubMed  Google Scholar 

  • Robinson H, Crofts A (1983) Kinetics of the oxidation reduction reactions of the photosystem II quinone acceptor complex and the path for deactivation. FEBS Lett 151:221–226

    Article  Google Scholar 

  • Ross O, Geider R, Berdalet E, Artigas M, Piera J (2011) Modelling the effect of vertical mixing on bottle incubations for determining in situ phytoplankton dynamics. I. Growth rates. MEPS 435: 13–31

    Article  CAS  Google Scholar 

  • Samson G, Prasil O, Yaakoubd B (1999) Photochemical and thermal phases of chlorophyll a fluorescence. Photosynthetica 37:2: 163–182

    Article  CAS  Google Scholar 

  • Schansker G, Toth S, Strasser R (2004) Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. Biochem Biophys Acta 1706:250–261

    Google Scholar 

  • Schansker G, Toth S, Holzwarth A, Garab G (2012) Chlorophyll a fluorescence: beyond the limits of the Qa model. Photosynth Res 120:43–58

    Article  CAS  Google Scholar 

  • Staniewski M, Short S (2014) Potential viral stimulation of primary production observed during experimental determinations of phytoplankton mortality. Aquat Microb Ecol 71:239–256

    Article  Google Scholar 

  • Stefanov D, Petkova V, Denev ID (2011) Screening for heat tolerance in common bean (Phaseolus vulgaris L.) lines and cultivars using JIP-test. Sci Hortic-Amsterdam 128:1–6

    Article  Google Scholar 

  • Stirbet A, Govindjee (2012) Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise. Photosynth Res 113:15–61

    Article  CAS  PubMed  Google Scholar 

  • Stirbet A, Lazar D, Kromdjik J, Govindjee (2018) Chlorophyll a fluorescence induction: can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica

  • Strasser R, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples

  • Strauss A, Kruger G, Strasser R, Van Heerden P (2005) Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P. Environ Exp Bot 56:147–157

    Article  CAS  Google Scholar 

  • Suggett D, Moore M, Hickman A, Geider R (2009) Interpretation of fast repetition rate (FRR) fluorescence: signatures of phytoplankton community structure versus physiological state. Mar Ecol Prog Ser 376:1–19

    Article  Google Scholar 

  • Sukenik A, Bennett J, Falkowski P (1987) Light-saturated photosynthesis – limitation by electron transport or carbon fixation. Biochem Biophys 891:205–215

    CAS  Google Scholar 

  • Toth S, Schansker G, Strasser R (2007) A non-invasive assay of the plastoquinone pool redox state based on the OJIP transient. Photosynth Res 93:193–203

    Article  CAS  PubMed  Google Scholar 

  • Voss M, Bange H, Dippner J, Middelburg J, Montoya J, Ward B (2013) The marine nitrogen cycle: recent discoveries, uncertainties, and the potential relevance of climate change. Philo Trans R Soc 368:20130121

    Article  CAS  Google Scholar 

  • Vredenberg W (2000) A three-state model for energy trapping and chlorophyll fluorescence in photosystem II incorporating radical pair recombination. Biophys J 79:26–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vredenberg W, Prasil O (2013) On the polyphasic quenching kinetics of chlorophyll a fluorescence in algae after light pulses of variable length. Photosynth Res 117:321–337

    Article  CAS  PubMed  Google Scholar 

  • Vredenberg W, Kasalicky V, Durchan M, Prasil O (2006) The chlorophyll a fluorescence induction pattern in chloroplasts upon repetitive single turnover excitations: accumulation and function of Qb-nonreducing centers. Biochem Biophys Acta 1757:173–181

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Allen Milligan for his insightful comments on earlier drafts of this manuscript. This study was funded in part by a NASA Earth and Space Science Fellowship.

Funding

This study was funded by NASA Earth and Space Science Fellowship (NNX15AN14H).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Brown.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, M., Penta, W.B., Jones, B. et al. The ratio of single-turnover to multiple-turnover fluorescence varies predictably with growth rate and cellular chlorophyll in the green alga Dunaliella tertiolecta. Photosynth Res 140, 65–76 (2019). https://doi.org/10.1007/s11120-018-00612-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-018-00612-7

Keywords

Navigation