Skip to main content

Advertisement

Log in

Spectral heterogeneity and carotenoid-to-bacteriochlorophyll energy transfer in LH2 light-harvesting complexes from Allochromatium vinosum

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Photosynthetic organisms produce a vast array of spectral forms of antenna pigment-protein complexes to harvest solar energy and also to adapt to growth under the variable environmental conditions of light intensity, temperature, and nutrient availability. This behavior is exemplified by Allochromatium (Alc.) vinosum, a photosynthetic purple sulfur bacterium that produces different types of LH2 light-harvesting complexes in response to variations in growth conditions. In the present work, three different spectral forms of LH2 from Alc. vinosum, B800-820, B800-840, and B800-850, were isolated, purified, and examined using steady-state absorption and fluorescence spectroscopy, and ultrafast time-resolved absorption spectroscopy. The pigment composition of the LH2 complexes was analyzed by high-performance liquid chromatography, and all were found to contain five carotenoids: lycopene, anhydrorhodovibrin, spirilloxanthin, rhodopin, and rhodovibrin. Spectral reconstructions of the absorption and fluorescence excitation spectra based on the pigment composition revealed significantly more spectral heterogeneity in these systems compared to LH2 complexes isolated from other species of purple bacteria. The data also revealed the individual carotenoid-to-bacteriochlorophyll energy transfer efficiencies which were correlated with the kinetic data from the ultrafast transient absorption spectroscopic experiments. This series of LH2 complexes allows a systematic exploration of the factors that determine the spectral properties of the bound pigments and control the rate and efficiency of carotenoid-to-bacteriochlorophyll energy transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BChl:

Bacteriochlorophyll

CD:

Circular dichroism

DADS:

Decay-associated difference spectra

DDM:

Sodium dodecyl maltoside

DMSO:

Dimethyl sulfoxide

EADS:

Evolution-associated decay spectra

ESA:

Excited state absorption

HPLC:

High-performance liquid chromatography

LH2:

Light-harvesting complex 2

NIR:

Near-infrared

OD:

Optical density

TA:

Transient absorption

References

  • Akahane J, Rondonuwu FS, Fiedor L, Watanabe Y, Koyama Y (2004) Dependence of singlet-energy transfer on the conjugation length of carotenoids reconstituted into the LH1 complex from Rhodospirillum rubrum G9. Chem Phys Lett 393:184–191

    Article  CAS  Google Scholar 

  • Angerhofer A, Bornhäuser F, Gall A, Cogdell RJ (1995) Optical and optically detected magnetic resonance investigation on purple photosynthetic bacterial antenna complexes. Chem Phys 194:259–274

    Article  CAS  Google Scholar 

  • Britton G (1995) UV/Visible spectroscopy. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol 1B., Spectroscopy. Birkhäuser Verlag, Basel, pp 13–62

  • Carey A-M, Hacking K, Picken N, Honkanen S, Kelly S, Niedzwiedzki DM, Blankenship RE, Shimizu Y, Wang-Otomo Z-Y, Cogdell RJ (2014) Characterization of the LH2 spectral variants produced by the photosynthetic purple sulphur bacterium Allochromatium vinosum. BBA Bioenerg 1837:1849–1860

    Article  CAS  Google Scholar 

  • Cerullo G, Polli D, Lanzani G, De Silvestri S, Hashimoto H, Cogdell RJ (2002) Photosynthetic light harvesting by carotenoids: detection of an intermediate excited state. Science 298:2395–2398

    Article  PubMed  CAS  Google Scholar 

  • Cleary L, Chen H, Chuang C, Silbey RJ, Cao J (2013) Optimal fold symmetry of LH2 rings on a photosynthetic membrane. Proc Natl Acad Sci USA 110:8537–8542

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cogdell RJ, Scheer H (1985) Circular dichroism of light-harvesting complexes from purple photosynthetic bacteria. Photochem Photobiol 42:669–678

    Article  CAS  Google Scholar 

  • Cogdell RJ, Thornber JP (1980) Light-harvesting pigment-protein complexes of purple photosynthetic bacteria. FEBS Lett 122:1–8

    Article  CAS  Google Scholar 

  • Cogdell RJ, Zuber H, Thornber JP, Drews G, Gingras G, Niederman RA, Parson WW, Feher G (1985) Recommendations for the naming of photochemical reaction centers and light-harvesting pigment-protein complexes from purple photosynthetic bacteria. Biochim Biophys Acta 806:185–186

    Article  CAS  Google Scholar 

  • Cogdell RJ, Isaacs NW, Howard TD, McLuskey K, Fraser NJ, Prince SM (1999) How photosynthetic bacteria harvest solar energy. J Bacteriol 181:3869–3879

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cogdell RJ, Howard TD, Isaacs NW, McLuskey K, Gardiner AT (2002) Structural factors which control the position of the Qy absorption band of bacteriochlorophyll a in purple bacterial antenna complexes. Photosynth Res 74:135–141

    Article  PubMed  CAS  Google Scholar 

  • Cogdell RJ, Gall A, Köhler J (2006) The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes. Q Rev Biophys 39:227–324

    Article  PubMed  CAS  Google Scholar 

  • Cong H, Niedzwiedzki D, Gibson GN, LaFountain AM, Kelsh RM, Gardiner AT, Cogdell RJ, Frank HA (2008) Ultrafast time-resolved carotenoid-to-bacteriochlorophyll energy transfer in LH2 complexes from photosynthetic bacteria. J Phys Chem B 112:10689–10703

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Farhoosh R, Chynwat V, Gebhard R, Lugtenburg J, Frank HA (1994) Triplet energy transfer between bacteriochlorophyll and carotenoids in B850 light-harvesting complexes of Rhodobacter sphaeroides R-26.1. Photosynth Res 42:157–166

    Article  PubMed  CAS  Google Scholar 

  • Feng J, Wang Q, Wu Y-S, Ai X-C, Zhang X-J, Huang Y-G, Zhang X-K, Zhang J-P (2004) Triplet excitation transfer between carotenoids in the LH2 complex from photosynthetic bacterium Rhodopseudomonas palustris. Photosynth Res 82:83–94

    Article  PubMed  CAS  Google Scholar 

  • Frank HA, Cogdell RJ (1996) Carotenoids in photosynthesis. Photochem Photobiol 63:257–264

    Article  PubMed  CAS  Google Scholar 

  • Fuciman M, Enriquez MM, Polivka T, Dall’Osto L, Bassi R, Frank HA (2012) Role of xanthophylls in light harvesting in green plants: a spectroscopic investigation of mutant LHCII and Lhcb pigment-protein complexes. J Phys Chem B 116:3834–3849

    Article  PubMed  CAS  Google Scholar 

  • Gall A, Gardiner AT, Cogdell RJ, Robert B (2006) Carotenoid stoichiometry in the LH2 crystal: no spectral evidence for the presence of the second molecule in the alpha/beta-apoprotein dimer. FEBS Lett 580:3841–3844

    Article  PubMed  CAS  Google Scholar 

  • Garcia A, Vernon LP, Mollenhauer H (1966) Properties of Chromatium subchromatophore particles obtained by treatment with Triton X-100. Biochemistry 5:2399–2407

    Article  PubMed  CAS  Google Scholar 

  • Gardiner AT, Takaichi S, Cogdell RJ (1992) The effect of changes in light intensity and temperature on the peripheral antenna of Rhodopseudomonas acidophila. Biochem Soc Trans 21:6S

    Article  Google Scholar 

  • Gardiner AT, Cogdell RJ, Takaichi S (1993) The effect of growth conditions on the light-harvesting apparatus in Rhodopseudomonas acidophila. Photosynth Res 38:159–167

    Article  PubMed  CAS  Google Scholar 

  • Gradinaru CC, Kennis JTM, Papagiannakis E, van Stokkum IHM, Cogdell RJ, Fleming GR, Niederman RA, van Grondelle R (2001) An unusual pathway of excitation energy deactivation in carotenoids: singlet-to-triplet conversion on an ultrafast timescale in a photosynthetic antenna. Proc Natl Acad Sci USA 98:2364–2369

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hawthornthwaite AM, Cogdell RJ (1991) Bacteriochlorophyll-binding proteins. In: Scheer H (ed) Chlorophylls. CRC Press, Boca Raton, pp 493–528

    Google Scholar 

  • Hayashi H, Morita S (1980) Near-infrared absorption spectra of light harvesting bateriochlorophyll protein complexes from Chromatium vinosum. J Biochem 88:1251–1258

    PubMed  CAS  Google Scholar 

  • Hayashi H, Nozawa T, Hatano M, Morita S (1981) Circular dichroism of Bacteriochlorophyll a in light harvesting bacteriochlorophyll protein complexes from Chromatium vinosum. J Biochem 89:1853–1861

    PubMed  CAS  Google Scholar 

  • Heinemeyer E-A, Schmidt K (1983) Changes in carotenoid biosynthesis caused by variations of growth conditions in cultures of Rhodopseudomonas acidophila strain 7050. Arch Microbiol 134:217–221

    Article  CAS  Google Scholar 

  • Holzwarth AR (1996) Data analysis of time-resolved measurements. In: Amesz J, Hoff AJ (eds) Biophysical techniques in photosynthesis, vol 3. Kluwer Academiv Publishers, Dordrecht, pp 75–91

    Chapter  Google Scholar 

  • Ilagan RP, Christensen RL, Chapp TW, Gibson GN, Pascher T, Polivka T, Frank HA (2005) Femtosecond time-resolved absorption spectroscopy of astaxanthin in solution and in α-crustacyanin. J Phys Chem A 109:3120–3127

    Article  PubMed  CAS  Google Scholar 

  • Kakitani Y, Akahane J, Ishii H, Sogabe H, Nagae H, Koyama Y (2007) Conjugation-length dependence of the T1 lifetimes of carotenoids free in solution and incorporated into the LH2, LH1, RC and RC-LH1 complexes: possible mechanisms of triplet-energy dissipation. Biochemistry 46:2181–2197

    Article  PubMed  CAS  Google Scholar 

  • Kennis JTM, Streltsov AM, Vulto SIE, Aartsma TJ, Nozawa T, Amesz J (1997) Femtosecond dynamics in isolated LH2 complexes of various species of purple bacteria. J Phys Chem B 101:7827–7834

    Article  CAS  Google Scholar 

  • Kereïche S, Bourinet L, Keegstra W, Arteni AA, Verbavatz J-M, Boekema EJ, Robert B, Gall A (2008) The peripheral light-harvesting complexes from purple sulfur bacteria have different ‘ring’ sizes. FEBS Lett 582:3650–3656

    Article  PubMed  Google Scholar 

  • Koepke J, Hu X, Schulten K, Michel H (1996) The crystal structure of the light harvesting complex II (B800-850) from Rhodospirillum molischianum. Structure 4:581–597

    Article  PubMed  CAS  Google Scholar 

  • Kosumi D, Fujiwara M, Fujii R, Cogdell RJ, Hashimoto H, Yoshizawa M (2009) The dependence of the ultrafast relaxation kinetics of the S2 and S1 states in β-carotene homologs and lycopene on conjugation length studied by femtosecond time-resolved absorption and Kerr-gate fluorescence spectroscopies. J Chem Phys 130:214506–214513

    Article  PubMed  Google Scholar 

  • Koyama Y, Rondonuwu FS, Fujii R, Watanabe Y (2004) Light-harvesting function of carotenoids in photo-synthesis: the roles of the newly found 11B u state. Biopolymers 74:2–18

    Article  PubMed  CAS  Google Scholar 

  • Kramer H, Amesz J (1996) Antenna organization in the purple sulfur bacteria Chromatium tepidum and Chromatium vinosum. Photosynth Res 49:237–244

    Article  PubMed  CAS  Google Scholar 

  • Krueger BP, Scholes GD, Fleming GR (1998) Calculation of couplings and energy-transfer pathways between the pigments of LH2 by the ab initio transition density cube method. J Phys Chem B 102:5378–5386

    Article  CAS  Google Scholar 

  • Law CJ, Roszak AW, Southall J, Gardiner AT, Isaacs NW, Cogdell RJ (2004) The structure and function of bacterial light-harvesting complexes (Review). Mol Membr Biol 21:183–191

    Article  PubMed  CAS  Google Scholar 

  • Löhner A, Carey A-M, Hacking K, Picken N, Kelly S, Cogdell RJ, Köhler J (2015) The origin of the split B800 absorption peak in the LH2 complexes from Allochromatium vinosum. Photosynth Res 123:23–31

    Article  PubMed  Google Scholar 

  • Macpherson AN, Arellano JB, Fraser NJ, Cogdell RJ, Gillbro T (2001) Efficient energy transfer from the carotenoid S2 state in a photosynthetic light-harvesting complex. Biophys J 80:923–930

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Magdaong NM, Lafountain AM, Greco JA, Gardiner AT, Carey A-M, Cogdell RJ, Gibson GN, Birge RR, Frank HA (2014) High efficiency light harvesting by carotenoids in the LH2 complex from photosynthetic bacteria: unique adaptation to growth under low-light conditions. J Phys Chem B 118:11172–11189

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Maiuri M, Polli D, Brida D, Lüer L, LaFountain AM, Fuciman M, Cogdell RJ, Frank HA, Cerullo G (2012) Solvent-dependent activation of intermediate excited states in the energy relaxation pathways of spheroidene. Phys Chem Chem Phys 14:6312–6319

    Article  PubMed  Google Scholar 

  • McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ, Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374:517–521

    Article  CAS  Google Scholar 

  • McLuskey K, Prince SM, Cogdell RJ, Isaacs NW (2001) The crystallographic structure of the B800-820 LH3 light-harvesting complex from the purple bacteria Rhodopseudomonas acidophila strain 7050. Biochemistry 40:8783–8789

    Article  PubMed  CAS  Google Scholar 

  • Monger TG, Cogdell RJ, Parson WW (1976) Triplet states of bacteriochlorophyll and carotenoids in chromatophores of photosynthetic bacteria. Biochim Biophys Acta 449:136–153

    Article  PubMed  CAS  Google Scholar 

  • Niedzwiedzki D, Koscielecki JF, Cong H, Sullivan JO, Gibson GN, Birge RR, Frank HA (2007) Ultrafast dynamics and excited state spectra of open-chain carotenoids at room and low temperatures. J Phys Chem B 111:5984–5998

    Article  PubMed  CAS  Google Scholar 

  • Niedzwiedzki DM, Fuciman M, Kobayashi M, Frank HA, Blankenship RE (2011a) Ultrafast time-resolved spectroscopy of the light-harvesting complex 2 (LH2) from the photosynthetic bacterium Thermochromatium tepidum. Photosynth Res 110:49–60

    Article  PubMed  CAS  Google Scholar 

  • Niedzwiedzki DM, Kobayashi M, Blankenship RE (2011b) Triplet excited state spectra and dynamics of carotenoids from the thermophilic purple photosynthetic bacterium Thermochromatium tepidum. Photosynth Res 107:177–186

    Article  PubMed  CAS  Google Scholar 

  • Niedzwiedzki DM, Bina D, Picken N, Honkanen S, Blankenship RE, Holten D, Cogdell RJ (2012) Spectroscopic studies of two spectral variants of light-harvesting complex 2 (LH2) from the photosynthetic purple sulfur bacterium Allochromatium vinosum. BBA Bioenerg 1817:1576–1587

    Article  CAS  Google Scholar 

  • Noguchi T, Hayashi H, Tasumi T (1990) Factors controlling the efficiency of energy transfer from carotenoids to bacteriochlorophyll in purple photosynthetic bacteria. Biochim Biophys Acta 1017:280–290

    Article  CAS  Google Scholar 

  • Okamoto H, Ogura M, Nakabayashi T, Tasumi M (1998) Sub-picosecond excited-state dynamics of carotenoid (spirilloxanthin) in the light-harvesting systems of Chromatium vinosum. Relaxation procces from the optically allowed S2 state. Chem Phys 236:309–318

    Article  CAS  Google Scholar 

  • Ostroumov EE, Mulvaney RM, Cogdell RJ, Scholes GD (2013) Broadband 2D electronic spectroscopy reveals a carotenoid dark state in purple bacteria. Science 340:52–56

    Article  PubMed  CAS  Google Scholar 

  • Papiz MZ, Prince SM, Howard T, Cogdell RJ, Isaacs NW (2003) The structure and thermal motion of the B800-850 LH2 complex from Rps. acidophila at 2.0 Å resolution and 100 K: new structural features and functionally relevant motions. J Mol Biol 326:1523–1538

    Article  PubMed  CAS  Google Scholar 

  • Prince SM, Papiz MZ, Freer AA, McDermott G, Hawthornthwaite-Lawless AM, Cogdell RJ, Isaacs NW (1997) Apoprotein structure in the LH2 complex from Rhodopseudomonas acidophila strain 10050: modular assembly and protein pigment interactions. J Mol Biol 268:412–423

    Article  PubMed  CAS  Google Scholar 

  • Rondonuwu FS, Taguchi T, Fujii R, Yokoyama K, Koyama Y, Watanabe Y (2004a) The energies and kinetics of triplet carotenoids in the LH2 antenna complexes as determined by phosphorescence spectroscopy. Chem Phys Lett 384:364–371

    Article  CAS  Google Scholar 

  • Rondonuwu FS, Yokoyama K, Fujii R, Koyama Y, Cogdell RJ, Watanabe Y (2004b) The role of the 11B u state in carotenoid-to-bacteriochlorophyll singlet-energy transfer in the LH2 antenna complexes from Rhodobacter sphaeroides G1C, Rhodobacter sphaeroides 2.4.1, Rhodospirillum molischianum and Rhodopseudomonas acidophila. Chem Phys Lett 390:314–322

    Article  CAS  Google Scholar 

  • Schiedt K, Liaaen-Jensen S (1995) Isolation and analysis. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol 1A. Birkhäuser Verlag, Basel

    Google Scholar 

  • Schubert A, Stenstam A, Beenken WJD, Herek JL, Cogdell R, Pullerits T, Sundström V (2004) In vitro self-assembly of the light harvesting pigment-protein LH2 revealed by ultrafast spectroscopy and electron microscopy. Biophys J 86:2363–2373

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shreve AP, Trautman JK, Frank HA, Owens TG, Van Beek JB, Albrecht AC (1992) On subpicosecond excitation energy transfer in light harvesting complexes (LHC): the B800-850 LHC of Rhodobacter sphaeroides 2.4.1. J Lumin 53:179–186

    Article  CAS  Google Scholar 

  • Takaichi S, Gardiner AT, Cogdell RJ (1992) Pigment composition of light-harvesting pigment-protein complexes from Rhodopseudomonas acidophila: Effect of light intensity. Res photosynth, In: 9th proceedings of international congress photosynthesis, vol 1. pp 149–152

  • Thornber JR, Trosper TL, Strouse CE (1978) Bacteriochlorophyll in vivo: relationships of spectral forms to specific membrane components. In: Clayton RK, Sistrom WR (eds) The photosynthetic bacteria. Plenum Press, London, pp 133–160

    Google Scholar 

  • Trautman JK, Shreve AP, Violette CA, Frank HA, Owens TG, Albrecht AC (1990) Femtosecond dynamics of energy transfer in B800-850 light-harvesting complexes of Rhodobacter sphaeroides. Proc Natl Acad Sci USA 87:215–219

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • van Stokkum IHM, Larsen DS, van Grondelle R (2004) Global and target analysis of time-resolved spectra. Biochim Biophys Acta 1657:82–104

    Article  PubMed  Google Scholar 

  • Wassink EC, Katz E, Dorrestein R (1939) Infrared absorption spectra of various strains of purple bacteria. Enzymologia 7:113–129

    CAS  Google Scholar 

  • Weissgerber T, Zigann R, Bruce D, Y-j Chang, Detter JC, Han C, Hauser L, Jeffries CD, Land M, Munk C, Tapia R, Dahl C (2011) Complete genome sequence of Allochromatium vinosum DSM 180. Stand Genomic Sci 5:311–330

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zuber H, Brunisholz RA (1993) In: Scheer H (ed) The Chlorophylls. CRC, Boca Raton, p 627

    Google Scholar 

  • Zuber H, Cogdell RJ (1995) Structure and organization of purple bacterial antenna complexes. In: Blankenship RE, Madigan MT, Bauer CE (eds) Advances in photosynthesis, vol 2., Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, pp 315–348

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Drs. Tomáš Polívka and Jürgen Köhler for helpful discussions. Work in the laboratory of H.A.F. was supported by grants from the National Science Foundation (MCB-1243565) and the University of Connecticut Research Foundation. Funding for the work performed in the laboratory of R.J.C. was provided by BBSRC. K.H. grew and harvested the Alc. vinosum cells and prepared the LH2 pigment-protein complexes, and D.M.N. performed the ultrafast experiments in the NIR spectral region using support from the Photosynthetic Antenna Research Center (PARC), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001035.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry A. Frank.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 939 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magdaong, N.M., LaFountain, A.M., Hacking, K. et al. Spectral heterogeneity and carotenoid-to-bacteriochlorophyll energy transfer in LH2 light-harvesting complexes from Allochromatium vinosum . Photosynth Res 127, 171–187 (2016). https://doi.org/10.1007/s11120-015-0165-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-015-0165-2

Keywords

Navigation