Skip to main content

Advertisement

Log in

Monitoring corn nitrogen nutrition index from optical and synthetic aperture radar satellite data and soil available nitrogen

  • Published:
Precision Agriculture Aims and scope Submit manuscript

This article has been updated

Abstract

Nitrogen (N) nutrition index (NNI) is a reliable indicator of plant N status for field crops, but its determination is both labor- and cost-intensive. The utilization of remote sensing approaches for monitoring N, mainly in relevant crops such as of corn (Zea mays L.), will be critical for enhancing effective use of this nutrient. Therefore, the aim of this study was to assess NNI predicted from optical and C-band Synthetic Aperture Radar (C-SAR) satellite data and available soil N (Nav) at different vegetative growth stages for corn crop. Eleven field studies were conducted in the Pampas region (Argentina), applying five fertilizer N rates (0, 60, 120, 180, and 240 kg N ha−1), all at sowing time. Plant samples were collected at sixth-leaf (V6), tenth-leaf (V10), fourteen-leaf (V14), and flowering (R1). Using linear regression models, NNI was best predicted using only optical satellite data from V6 to V14, and integrating optical with C-SAR plus Nav at R1. The best monitoring model integrated vegetation spectral indices, C-SAR and Nav data at V10 with an adjusted R2 of 0.75 achieved during calibration in the northern Pampa. During validation, it predicted NNI with an RMSE of 0.14 and a MAPE of 12% in the southeastern Pampa. The red-edge spectrum and Local Incidence Angle of C-SAR were necessary to monitor the corn N status via prediction of NNI. Thus, this study provided empirical models to remotely sensed corn N status within fields during vegetative period, serving as a foundational data for guiding future N management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data will be provided upon reasonable request.

Change history

  • 28 August 2023

    Three authors' last name has been corrected for citation

References

  • Ameline, M., Fieuzal, R., Betbeder, J., Berthoumieu, J. F., & Baup, F. (2018). Estimation of corn yield by assimilating SAR and optical time series into a simplified agro-meteorological model: From diagnostic to forecast. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(12), 4747–4760. https://doi.org/10.1109/JSTARS.2018.2878502

    Article  Google Scholar 

  • Andrade, F. H., & Sadras, V. O. (2000). Bases para el manejo del maíz, el girasol y la soja (F. H. Andrade & V. O. Sadras (eds). INTA-UNMdP).

  • Aramburu Merlos, F., Monzon, J. P., Mercau, J. L., Taboada, M., Andrade, F. H., Hall, A. J., Jobbagy, E., Cassman, K. G., & Grassini, P. (2015). Potential for crop production increase in Argentina through the closure of existing yield gaps. Field Crops Research, 184, 145–154. https://doi.org/10.1016/j.fcr.2015.10.001

    Article  Google Scholar 

  • Baret, F., Weiss, M., Allard, D., Garrigues, S., Leroy, M., Jeanjean, H., Fernandes, R., Myneni, R., Privette, J., & Morisette, J. (2021). VALERI: A network of sites and a methodology for the validation of medium spatial resolution land satellite products. Remote Sensing of Environment, 76(3), 36–39.

    Google Scholar 

  • Battude, M., Al Bitar, A., Morin, D., Cros, J., Huc, M., Marais Sicre, C., Le Dantec, V., & Demarez, V. (2016). Estimating maize biomass and yield over large areas using high spatial and temporal resolution Sentinel-2 like remote sensing data. Remote Sensing of Environment, 184, 668–681. https://doi.org/10.1016/j.rse.2016.07.030

    Article  Google Scholar 

  • Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54(5), 464–465. https://doi.org/10.2134/agronj1962.00021962005400050028x

    Article  Google Scholar 

  • Brauns, B., Bjerg, P. L., Song, X., & Jakobsen, R. (2015). Field scale interaction and nutrient exchange between surface water and shallow groundwater in the Baiyang Lake region, North China Plain. Journal of Environmental Sciences (china), 45, 60–75. https://doi.org/10.1016/j.jes.2015.11.021

    Article  CAS  Google Scholar 

  • Bray, R. H., & Kurtz, L. T. (1945). Determination of total, organic, and available forms of phosphorus in soils. Soil Science, 59(1), 39–46.

    Article  CAS  Google Scholar 

  • Bremner, J. M., & Mulvaney, C. S. (1982). Nitrogen-total. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of Soil Analysis, Part 2: Chemical Methods (pp. 595–624). American Society of Agronomy.

    Google Scholar 

  • Campbell, J. B., Wynne, R. H., & Thomas, V. A. (2022). Introduction to remote sensing. The Guilford Press.

    Google Scholar 

  • Chang, J., & Shoshany, M. (2016). Red-edge ratio Normalized Vegetation Index for remote estimation of green biomass. IEEE International Geoscience and Remote Sensing Symposium. 10–15 July 2016, 1337–1339.

  • Chen, P., Wang, J., Huang, W., Tremblay, N., Ou, Y., & Zhang, Q. (2013). Critical nitrogen curve and remote detection of nitrogen nutrition index for corn in the northwestern plain of Shandong Province, China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(2), 682–689. https://doi.org/10.1109/JSTARS.2012.2236302

    Article  Google Scholar 

  • Cilia, C., Panigada, C., Rossini, M., Meroni, M., Busetto, L., Amaducci, S., Boschetti, M., Picchi, V., & Colombo, R. (2014). Nitrogen status assessment for variable rate fertilization in maize through hyperspectral imagery. Remote Sensing, 6(7), 6549–6565. https://doi.org/10.3390/rs6076549

    Article  Google Scholar 

  • Córdoba, M. A., Bruno, C. I., Costa, J. L., Peralta, N. R., & Balzarini, M. G. (2016). Protocol for multivariate homogeneous zone delineation in precision agriculture. Biosystems Engineering, 143, 95–107. https://doi.org/10.1016/j.biosystemseng.2015.12.008

    Article  Google Scholar 

  • Correndo, A. A., Rosso, L. H. M., Hernandez, C. H., Bastos, L. M., Nieto, L., Holzworth, D., & Ciampitti, I. A. (2022). Metrica: an R package to evaluate prediction performance of regression and classification point-forecast models. Journal of Open Source Software, 7(79), 4655.

    Article  Google Scholar 

  • El Hajj, M., Baghdadi, N., Bazzi, H., & Zribi, M. (2019). Penetration analysis of SAR signals in the C and L bands for wheat, maize, and grasslands. Remote Sensing, 11(31), 1–14. https://doi.org/10.3390/rs11010031

    Article  Google Scholar 

  • Filipponi, F. (2019). Sentinel-1 GRD Preprocessing Workflow. Proceedings, 18(1), 11. https://doi.org/10.3390/ecrs-3-06201

    Article  Google Scholar 

  • Hollis, J. M., Hannam, J., & Bellamy, P. H. (2012). Empirically-derived pedotransfer functions for predicting bulk density in.pdf. European Journal of Soil Science, 63, 96–10.

    Article  CAS  Google Scholar 

  • Hosseini, M., McNairn, H., Mitchell, S., Dingle Robertson, L., Davidson, A., & Homayouni, S. (2019). Synthetic aperture radar and optical satellite data for estimating the biomass of corn. International Journal of Applied Earth Observation and Geoinformation, 83, 1–12. https://doi.org/10.1016/j.jag.2019.101933

    Article  Google Scholar 

  • Hosseini, M., McNairn, H., Mitchell, S., Davidson, A., & Robertson, L. Di. (2018). Combination of optical and SAR sensors for monitoring biomass over corn fields. En. IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 22–27 July 2018, 2018-July, 5952–5955. https://doi.org/10.1109/IGARSS.2018.8518998

  • Houlès, V., Guérif, M., & Mary, B. (2007). Elaboration of a nitrogen nutrition indicator for winter wheat based on leaf area index and chlorophyll content for making nitrogen recommendations. European Journal of Agronomy, 27(1), 1–11. https://doi.org/10.1016/j.eja.2006.10.001

    Article  CAS  Google Scholar 

  • Huang, S., Miao, Y., Zhao, G., Yuan, F., Ma, X., Tan, C., & Bareth, G. (2015). Satellite remote sensing-based in-season diagnosis of rice nitrogen status in Northeast China. Remote Sensing, 7(8), 10646–10667. https://doi.org/10.3390/rs70810646

    Article  Google Scholar 

  • Kaplan, G., Fine, L., Lukyanov, V., Manivasagam, V. S., Tanny, J., & Rozenstein, O. (2021). Normalizing the local incidence angle in sentinel-1 imagery to improve leaf area index, vegetation height, and crop coefficient estimations. Land, 10(7), 680. https://doi.org/10.3390/land10070680

    Article  Google Scholar 

  • Keeney, D. R., & Nelson, D. W. (1982). Nitrogen-Inorganic Forms. In: Page. A. L. et Al. (Eds.). Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. American Society of Agronomy Inc. – Soil Science Society of America. J. Inc. Madison, Wisconsin, USA, 643–698.

  • Lapaz Olveira, A., Saínz Rozas, H., Castro-Franco, M., Carciochi, W., Nieto, L., Balzarini, M., Ciampitti, I., & Reussi Calvo, N. (2023). Monitoring corn nitrogen concentration from radar (C-SAR), optical, and sensor satellite data fusion. Remote Sensing, 15(3), 824. https://doi.org/10.3390/rs15030824

    Article  Google Scholar 

  • Lemaire, G., Jeuffroy, M. H., & Gastal, F. (2008). Diagnosis tool for plant and crop N status in vegetative stage: Theory and practices for crop N management. European Journal of Agronomy, 28(4), 614–624. https://doi.org/10.1016/j.eja.2008.01.005

    Article  CAS  Google Scholar 

  • Li, F., Miao, Y., Feng, G., Yuan, F., Yue, S., Gao, X., Liu, Y., Liu, B., Ustin, S. L., & Chen, X. (2014). Improving estimation of summer maize nitrogen status with Red-Edge-based spectral vegetation indices. Field Crops Research, 157, 111–123. https://doi.org/10.1016/j.fcr.2013.12.018

    Article  Google Scholar 

  • Li, D., Miao, Y., Ransom, C. J., Bean, G. M., Kitchen, N. R., Fernández, F. G., Sawyer, J. E., Camberato, J. J., Carter, P. R., Ferguson, R. B., Franzen, D. W., Laboski, C. A. M., Nafziger, E. D., & Shanahan, J. F. (2022). Corn nitrogen nutrition index prediction improved by integrating genetic, environmental, and management factors with active canopy sensing using machine learning. Remote Sensing. https://doi.org/10.3390/rs14020394

    Article  Google Scholar 

  • Ma, B. L., & Biswas, D. K. (2015). Precision Nitrogen Management for Sustainable Corn Production. In A. Goyal & E. Lichtfouse (Eds.), Sustainable Agriculture Reviews: Cereals. Springer.

    Google Scholar 

  • Maltese, N. E., Maddonni, G. A., Melchiori, R. J. M., Ferreyra, J. M., & Caviglia, O. P. (2020). Crop nitrogen status of early- and late-sown maize at different plant densities. Field Crops Research, 258, 107965. https://doi.org/10.1016/j.fcr.2020.107965

    Article  Google Scholar 

  • Mandal, D., Kumar, V., Lopez-Sanchez, J. M., Bhattacharya, A., McNairn, H., & Rao, Y. S. (2020). Crop biophysical parameter retrieval from Sentinel-1 SAR data with a multi-target inversion of water cloud model. International Journal of Remote Sensing, 41(14), 5503–5524. https://doi.org/10.1080/01431161.2020.1734261

    Article  Google Scholar 

  • Moreira, A., Prats-Iraola, P., Younis, M., Krieger, G., Hajnsek, I., & Papathanassiou, K. P. (2013). A tutorial on synthetic aperture radar. IEEE Geoscience and Remote Sensing Magazine, 1(1), 6–43. https://doi.org/10.1109/mgrs.2013.2248301

    Article  Google Scholar 

  • Morris, T. F., Murrell, T. S., Beegle, D. B., Camberato, J. J., Ferguson, R. B., Grove, J., Ketterings, Q., Kyveryga, P. M., Laboski, C. A. M., McGrath, J. M., Meisinger, J. J., Melkonian, J., Moebius-Clune, B. N., Nafziger, E. D., Osmond, D., Sawyer, J. E., Scharf, P. C., Smith, W., Spargo, J. T., … Yang, H. (2018). Strengths and limitations of nitrogen rate recommendations for corn and opportunities for improvement. Agronomy Journal, 110(1), 1–37. https://doi.org/10.2134/agronj2017.02.0112

    Article  Google Scholar 

  • Orcellet, J., Reussi Calvo, N. I., Saínz Rozas, H. R., Wyngaard, N., & Echeverría, H. E. (2017). Anaerobically incubated nitrogen improved nitrogen diagnosis in corn. Agronomy Journal, 109(1), 291–298. https://doi.org/10.2134/agronj2016.02.0115

    Article  Google Scholar 

  • Pagani, A., Echeverría, H. E., Andrade, F. H., & Saínz Rozas, H. R. (2012). Effects of nitrogen and sulfur application on grain yield, nutrient accumulation, and harvest indexes in maize. Journal of Plant Nutrition, 35(7), 1080–1097. https://doi.org/10.1080/01904167.2012.671410

    Article  CAS  Google Scholar 

  • Plénet, D., & Lemaire, G. (2000). Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops: Determination of critical N concentration. Plant and Soil, 216, 65–82.

    Article  Google Scholar 

  • Reussi Calvo, N. I., Echeverría, H. E., Saínz Rozas, H. R., Berardo, A., & Diovisalvi, N. (2014). Can a soil mineralization test improve wheat and corn nitrogen diagnosis? Better Crops Plant Food, 98, 12–14.

    Google Scholar 

  • Reussi Calvo, N. I., Saínz Rozas, H. R., Echeverría, H. E., & Diovisalvi, N. (2015). Using canopy indices to quantify the economic optimum nitrogen rate in spring wheat. Agronomy Journal, 107(2), 459–465. https://doi.org/10.2134/agronj14.0392

    Article  CAS  Google Scholar 

  • Reussi Calvo, N. I., Wyngaard, N., Orcellet, J., Saínz Rozas, H. R., & Echeverría, H. E. (2018). Predicting field-apparent nitrogen mineralization from anaerobically incubated nitrogen. Soil Science Society of America Journal, 82(2), 502–508. https://doi.org/10.2136/sssaj2017.11.0395er

    Article  Google Scholar 

  • Ritchie, S. W., & Hanway, J. J. (1982). How a corn plant develops. Iowa State University of Science and Technology. Cooperative Extension Service, Iowa, EEUU. Special Report No48. pp. 24.

  • Sadras, V. O., & Calviño, P. A. (2001). Quantification of grain yield response to soil depth in soybean, maize, sunflower, and wheat. Agronomy Journal, 93(3), 577–583. https://doi.org/10.2134/agronj2001.933577x

    Article  Google Scholar 

  • Saínz Rozas, H. R., Echeverría, H. E., Herfurth, E., & Studdert, G. A. (2001). Basal stalk nitrate of maize. II diagnosis of nitrogen nutrition. Ciencia Del Suelo, 19, 125–135.

    Google Scholar 

  • Saínz Rozas, H. R., Eyherabide, M., Larrea, G., Martínez Cuesta, N., Angelini, H. P., Reussi Calvo, N. I., & Wyngaard, N. (2019a). Relevamiento y determinación de propiedades químicas en suelos de aptitud agrícola de la región pampeana (FERTILIZAR (ed.)). Simposio Fertilidad 2019a. https://www.fertilizar.org.ar/simposio2019a

  • Saínz Rozas, H. R., Reussi Calvo, N. I., & Barbieri, P. A. (2019b). Uso del índice de verdor para determinar la dosis optima económica de nitrógeno en maíz. Unidad Integrada INTA-FCA Balcarce. Balcarce, Buenos Aires, Argentina. Pp. 26.

  • Shuai, G., & Basso, B. (2022). Subfield maize yield prediction improves when in-season crop water deficit is included in remote sensing imagery-based models. Remote Sensing of Environment, 272, 112938. https://doi.org/10.1016/j.rse.2022.112938

    Article  Google Scholar 

  • Thomas, G. W. (1996). Soil pH and Soil Acidity. In D. L. Sparks (Ed.), Methods of Soil Analysis Part 3: Chemical Methods. Wiley.

    Google Scholar 

  • Ulaby, F. T., & Long, D. G. (2014). Microwave Radar and Radiometric Remote Sensing. In F. T. Ulaby & D. G. Long (Eds.), Microwave Radar and Radiometric Remote Sensing. University of Michigan Press.

    Chapter  Google Scholar 

  • Walkley, A., & Black, A. I. (1934). An examination of the Degtjareff method for determining soil organic matter and proposed codification of the chromic acid titration method. Soil Science, 37(1), 29–38.

    Article  CAS  Google Scholar 

  • Xia, T., Miao, Y., Wu, D., Shao, H., Khosla, R., & Mi, G. (2016). Active optical sensing of spring maize for in-season diagnosis of nitrogen status based on nitrogen nutrition index. Remote Sensing, 8(7), 605. https://doi.org/10.3390/rs8070605

    Article  Google Scholar 

  • Yang, H., Yang, J., Lv, Y., & He, J. (2014). SPAD values and nitrogen nutrition index for the evaluation of rice nitrogen status. Plant Production Science, 17(1), 81–92. https://doi.org/10.1626/pps.17.81

    Article  Google Scholar 

  • Zha, H., Miao, Y., Wang, T., Li, Y., Zhang, J., Sun, W., Feng, Z., & Kusnierek, K. (2020). Improving unmanned aerial vehicle remote sensing-based rice nitrogen nutrition index prediction with machine learning. Remote Sensing, 12(2), 215. https://doi.org/10.3390/rs12020215

    Article  Google Scholar 

  • Zhang, W., Chen, E., Li, Z., Zhao, L., Ji, Y., Zhang, Y., & Liu, Z. (2018). Rape (Brassica napus L.) growth monitoring and mapping based on radarsat-2 time-series data. Remote Sensing, 10(2), 206. https://doi.org/10.3390/rs10020206

    Article  Google Scholar 

  • Zhao, B., Duan, A., Ata-ul-karim, S. T., Liu, Z., Chen, Z., Gong, Z., Zhang, J., Xiao, J., Liu, Z., Qin, A., & Ning, D. (2018). Exploring new spectral bands and vegetation indices for estimating nitrogen nutrition index of summer maize. European Journal of Agronomy, 93, 113–125. https://doi.org/10.1016/j.eja.2017.12.006

    Article  CAS  Google Scholar 

  • Ziadi, N., Brassard, M., Bélanger, G., Claessens, A., Tremblay, N., Cambouris, A. N., Nolin, M. C., & Parent, L. É. (2008). Chlorophyll measurements and nitrogen nutrition index for the evaluation of corn nitrogen status. Agronomy Journal, 100(5), 1264–1273. https://doi.org/10.2134/agronj2008.0016

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research projects FonCyT [Project PICT 0605, 2022]; and INTA [Project PE-E9-I177-001, 2019] funded this work. We acknowledge the farms of Las Balas (LIAG Argentina), El Cisne (FUMISEM SRL), El Palomar (Mr. Pereyra), and La Masia (Mr. Pernia) for providing the locations for the installation of experimental sites. Also, agronomic engineers Francisco Melcón, Nicolás Spurio, Diego Aguilera, Jorge Ramírez, and Rafael de Velazco collaborate for all their support in the execution of the trials. This work is part of a thesis by Adrián Lapaz Olveira in partial fulfillment of the requirements for the Doctor's degree (Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Argentina). We also gratefully acknowledge contribution No. 23-195-J from the Kansas Agricultural Experiment Station. Their support was crucial to completing this work and has yielded valuable findings in agricultural research.

Funding

The research projects FonCyT [Project PICT 0605, 2022]; and INTA [Project PE-E9-I177-001, 2019] funded this work.

Author information

Authors and Affiliations

Authors

Contributions

AMLO: conceptualization, data curation, formal analysis, funding acquisition, investigation, methodology, project administration, resources, visualization, writing-original draft, writing-review & editing. MC-F: conceptualization, data curation, formal analysis, investigation, writing-original draft, writing-review & editing. HRSR: conceptualization, data curation, formal analysis, investigation, funding acquisition, writing-review & editing, project administration, resources, writing-original draft. WDC: data curation, investigation, writing-original draft, writing-review & editing. MB: conceptualization, formal analysis, investigation, writing-original draft, writing-review & editing. OA: data curation, writing-review & editing. ICC: investigation, writing-original draft, writing-review & editing. NIRC: conceptualization, formal analysis, methodology, supervision, investigation, writing-original draft, writing-review & editing, funding acquisition, project administration, and resources.

Corresponding authors

Correspondence to Adrián M. Lapaz Olveira or Nahuel I. Reussi Calvo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lapaz Olveira, A.M., Castro-Franco, M., Saínz Rozas, H.R. et al. Monitoring corn nitrogen nutrition index from optical and synthetic aperture radar satellite data and soil available nitrogen. Precision Agric 24, 2592–2606 (2023). https://doi.org/10.1007/s11119-023-10054-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-023-10054-4

Keywords

Navigation