Skip to main content
Log in

Scale-dependent geostatistical modelling of crop-soil relationships in view of Precision Agriculture

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Assessing and modelling within-field variability of crop and soil at different scales is a pre-requisite for effective management in Precision Agriculture. Actually, site-specific agronomic management cannot disregard knowledge of the associated scale(s) of the phenomena occurring in the soil and plant that a farmer wishes to control. A partition of the field into management zones has then to be scale-dependent because it may vary as a result of scaling. The objective of this study was to construct a scale-dependent model of spatial soil-crop relationships by using a multivariate geostatistical approach for producing field partition at the relevant scales. Some soil attributes and confined compression function parameters, photosynthetic parameters and wheat yields were determined at 100 locations on a regular grid (150 m × 150 m) covering the whole field area (200 ha). A nested linear model of coregionalization was estimated and a Factorial cokriging analysis was performed to model the multivariate correlation structure and calculate regionalized factors at three different scales. The retained regionalized factors were: the first factor at 545 m scale, showing greater spatial correlation with yield parameters; the second factor at the same scale, more correlated with plant photosynthetic parameter and mechanical properties of soil; the first longer-scale factor, which might be interpreted as an inverse indicator of soil compaction. It was more related to variables clay and bulk density that can be assumed stationary at a scale extending beyond the actual size of the field. Each of these three factors produced a different partition of the field, each of which could be used for different purposes and to manage distinct agronomic operations. The results showed the complexity of the soil-crop interactions due to the influence of distinct sources of variation working on several spatial scales. The multi-scale delineation of the field in homogeneous zones emphasises the need not to neglect the scale associated with agronomic operations, in order to increase the effectiveness of site-specific management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Alexandrou, A., & Earl, R. (1995). In situ determination of the pre-compaction stress of a soil. Journal of Agricultural Engineering Research, 61(1), 67–71.

    Article  Google Scholar 

  • Atkinson, P. M., & Tate, N. J. (2000). Spatial scale problems and geostatistical solutions: A review. The Professional Geographer, 52(4), 607–623.

    Article  Google Scholar 

  • Baumgartl, T., & Köck, B. (2004). Modeling volume change and mechanical properties with hydraulic models. Soil Science Society of America Journal, 68(1), 57–65.

    Article  CAS  Google Scholar 

  • Behrens, T., Schmidt, K., MacMillan, R. A., & Rossel, R. V. (2018). Multiscale contextual spatial modelling with the Gaussian scale space. Geoderma, 310, 128–137.

    Article  Google Scholar 

  • Behrens, T., Zhu, A.-X., Schmidt, K., & Scholten, T. (2010). Multi-scale digital terrain analysis and feature selection for digital soil mapping. Geoderma, 155(3–4), 175–185.

    Article  Google Scholar 

  • Biswas, A., Cresswell, H. P., Viscarra Rossel, R. A., & Si, B. C. (2013). Separating scale-specific spatial variability in two dimensions using bi-dimensional empirical mode decomposition. Soil Science Society of America Journal, 77(6), 1991–1995.

    Article  CAS  Google Scholar 

  • Buttafuoco, G., Castrignanò, A., Cucci, G., Lacolla, G., & Lucà, F. (2017). Geostatistical modelling of within-field soil and yield variability for management zones delineation: A case study in a durum wheat field. Precision Agriculture, 18(1), 37–58.

    Article  Google Scholar 

  • Casa, R., & Castrignanò, A. (2008). Analysis of spatial relationships between soil and crop variables in a durum wheat field using a multivariate geostatistical approach. European Journal of Agronomy, 28(3), 331–342.

    Article  Google Scholar 

  • Castrignanò, A., Buttafuoco, G., & Puddu, R. (2008). Multi-scale assessment of the risk of soil salinization in an area of south-eastern Sardinia (Italy). Precision Agriculture, 9(1), 17–31.

    Article  Google Scholar 

  • Castrignanò, A., Giugliarini, L., Risaliti, R., & Martinelli, N. (2000). Study of spatial relationships among some soil physico-chemical properties of a field in central Italy using multivariate geostatistics. Geoderma, 97(1–2), 39–60.

    Article  Google Scholar 

  • Charman, P., & Roper, M. (2007). Soil organic matter. Oxford University Press.

    Google Scholar 

  • Chiles, J., & Delfiner, P. (1999). Discrete exact simulation by the Fourier method. In Geostatistics Wollongong 96, Proceedings of the fifth international geostatistics congress.

  • Delatorre-Herrera, J., Ruiz, K. B., & Pinto, M. (2021). The importance of non-diffusional factors in determining photosynthesis of two contrasting quinoa ecotypes (Chenopodium quinoa Willd.) subjected to salinity conditions. Plants, 10(5), 927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dexter, A. R. (1988). Advances in characterization of soil structure. Soil and Tillage Research, 11, 199–238.

    Article  Google Scholar 

  • Dexter, A. R. (2004). Soil physical quality: Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma, 120(3–4), 201–214.

    Article  Google Scholar 

  • Emerson, W., & Bakker, A. (1973). The comparative effects of exchangeable calcium, magnesium, and sodium on some physical properties of red-brown earth subsoils. II. The spontaneous dispersion of aggregates in water. Soil Research, 11(2), 151–157.

    Article  CAS  Google Scholar 

  • Fraisse, C., Sudduth, K., & Kitchen, N. (2001). Delineation of site-specific management zones by unsupervised classification of topographic attributes and soil electrical conductivity. Transactions of the ASAE, 44(1), 155.

    Article  Google Scholar 

  • Fridgen, J. J., Kitchen, N. R., Sudduth, K. A., Drummond, S. T., Wiebold, W. J., & Fraisse, C. W. (2004). Management zone analyst (MZA) software for subfield management zone delineation. Agronomy Journal, 96(1), 100–108.

    Google Scholar 

  • Fu, S., Fedota, J. R., Greenwood, P. M., & Parasuraman, R. (2010). Dissociation of visual C1 and P1 components as a function of attentional load: An event-related potential study. Biological Psychology, 85(1), 171–178.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gee, G. W., & Or, D. (2002). 2.4 Particle-size analysis. Methods of Soil Analysis: Part 4 Physical Methods, 5, 255–293.

    Google Scholar 

  • Goovaerts, P., Webster, R., & Dubois, J.-P. (1997). Assessing the risk of soil contamination in the Swiss Jura using indicator geostatistics. Environmental and Ecological Statistics, 4(1), 49–64.

    Article  Google Scholar 

  • Gregory, A. S., Watts, C. W., Griffiths, B. S., Hallett, P. D., Kuan, H. L., & Whitmore, A. P. (2009). The effect of long-term soil management on the physical and biological resilience of a range of arable and grassland soils in England. Geoderma, 153(1–2), 172–185.

    Article  Google Scholar 

  • Gregory, A., Watts, C., Whalley, W., Kuan, H., Griffiths, B., Hallett, P., & Whitmore, A. (2007). Physical resilience of soil to field compaction and the interactions with plant growth and microbial community structure. European Journal of Soil Science, 58(6), 1221–1232.

    Article  Google Scholar 

  • Gregory, A., Whalley, W., Watts, C., Bird, N., Hallett, P., & Whitmore, A. (2006). Calculation of the compression index and precompression stress from soil compression test data. Soil and Tillage Research, 89(1), 45–57.

    Article  Google Scholar 

  • Guastaferro, F., Castrignanò, A., De Benedetto, D., Sollitto, D., Troccoli, A., & Cafarelli, B. (2010). A comparison of different algorithms for the delineation of management zones. Precision Agriculture, 11(6), 600–620.

    Article  Google Scholar 

  • Handreck, K. A., Black, N. D., & Black, N. (2002). Growing media for ornamental plants and turf. UNSW Press.

    Google Scholar 

  • Heydari, L., Bayat, H., & Gregory, A. S. (2021). Investigating the effect of inoculation of chickpea with rhizobium and mycorrhizal fungi (Funneliformis mosseae) on soil mechanical and physical behavior. Geoderma, 385, 114860.

    Article  Google Scholar 

  • Horn, R., & Fleige, H. (2003). A method for assessing the impact of load on mechanical stability and on physical properties of soils. Soil and Tillage Research, 73(1–2), 89–99.

    Article  Google Scholar 

  • Horn, R., & Rostek, J. (2000). Subsoil compaction processes-state of knowledge. Advances in Geoecology, 32, 44–54.

    Google Scholar 

  • Horn, R., Way, T., & Rostek, J. (2003). Effect of repeated tractor wheeling on stress/strain properties and consequences on physical properties in structured arable soils. Soil and Tillage Research, 73(1–2), 101–106.

    Article  Google Scholar 

  • Imhoff, S., Da Silva, A. P., & Fallow, D. (2004). Susceptibility to compaction, load support capacity, and soil compressibility of Hapludox. Soil Science Society of America Journal, 68(1), 17–24.

    Article  CAS  Google Scholar 

  • Junior, M. D., & Pierce, F. (1995). A simple procedure for estimating preconsolidation pressure from soil compression curves. Soil Technology, 8(2), 139–151.

    Article  Google Scholar 

  • Keller, L. M., Holzer, L., Wepf, R., Gasser, P., Münch, B., & Marschall, P. (2011a). On the application of focused ion beam nanotomography in characterizing the 3D pore space geometry of Opalinus clay. Physics and Chemistry of the Earth, Parts a/b/c, 36(17–18), 1539–1544.

    Article  Google Scholar 

  • Keller, T., & Arvidsson, J. (2007). Compressive properties of some Swedish and Danish structured agricultural soils measured in uniaxial compression tests. European Journal of Soil Science, 58(6), 1373–1381.

    Article  Google Scholar 

  • Keller, T., Lamandé, M., Schjønning, P., & Dexter, A. R. (2011b). Analysis of soil compression curves from uniaxial confined compression tests. Geoderma, 163(1–2), 13–23.

    Article  Google Scholar 

  • King, A. W. (1991). Translating models across scales in the landscape. In Quantitative methods in landscape ecology: The analysis and interpretation of landscape heterogeneity (Vol. 82, p. 479).

  • Kuan, H., Hallett, P., Griffiths, B., Gregory, A., Watts, C., & Whitmore, A. (2007). The biological and physical stability and resilience of a selection of Scottish soils to stresses. European Journal of Soil Science, 58(3), 811–821.

    Article  Google Scholar 

  • Lam, N. S.-N. (2004). Fractals and scale in environmental assessment and monitoring. In Scale and geographic inquiry: Nature, society, and method (pp. 23–40).

  • Larson, W., Gupta, S., & Useche, R. (1980). Compression of agricultural soils from eight soil orders. Soil Science Society of America Journal, 44(3), 450–457.

    Article  Google Scholar 

  • Lebert, M., & Horn, R. (1991). A method to predict the mechanical strength of agricultural soils. Soil and Tillage Research, 19(2–3), 275–286.

    Article  Google Scholar 

  • Legendre, P., Dale, M. R., Fortin, M. J., Gurevitch, J., Hohn, M., & Myers, D. (2002). The consequences of spatial structure for the design and analysis of ecological field surveys. Ecography, 25(5), 601–615.

    Article  Google Scholar 

  • Liu, H., Colombi, T., Jäck, O., Keller, T., & Weih, M. (2022). Effects of soil compaction on grain yield of wheat depend on weather conditions. Science of the Total Environment, 807, 150763.

    Article  CAS  PubMed  Google Scholar 

  • Maroco, J. P., Pereira, J. S., & Chaves, M. M. (2000). Growth, photosynthesis and water-use efficiency of two C4Sahelian grasses subjected to water deficits. Journal of Arid Environments, 45(2), 119–137.

    Article  Google Scholar 

  • Martin, B., & Ruiz-Torres, N. A. (1992). Effects of water-deficit stress on photosynthesis, its components and component limitations, and on water use efficiency in wheat (Triticum aestivum L.). Plant Physiology, 100(2), 733–739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNabb, D., Startsev, A., & Nguyen, H. (2001). Soil wetness and traffic level effects on bulk density and air-filled porosity of compacted boreal forest soils. Soil Science Society of America Journal, 65(4), 1238–1247.

    Article  CAS  Google Scholar 

  • Ngouajio, M., Counts, J., & Clark, D. (2011). Effect of compost and brassica cover crops on soil microbial biomass and asparagus performance. In I International symposium on organic matter management and compost use in horticulture 1018,

  • Ruiz, H. A., Fernandes, R., & Costa, L. M. (2014). Condutividade hidráulica, porosidade, resistência mecânica e intervalo hídrico ótimo em Latossolos artificialmente compactados. Revista Brasileira De Engenharia Agrícola e Ambiental, 18, 1003–1009.

    Article  Google Scholar 

  • Saffih-Hdadi, K., Défossez, P., Richard, G., Cui, Y.-J., Tang, A.-M., & Chaplain, V. (2009). A method for predicting soil susceptibility to the compaction of surface layers as a function of water content and bulk density. Soil and Tillage Research, 105(1), 96–103.

    Article  Google Scholar 

  • Schepers, A. R., Shanahan, J. F., Liebig, M. A., Schepers, J. S., Johnson, S. H., & Luchiari, A., Jr. (2004). Appropriateness of management zones for characterizing spatial variability of soil properties and irrigated corn yields across years. Agronomy Journal, 96(1), 195–203.

    Article  Google Scholar 

  • Schroeder, R., Fleige, H., Hoffmann, C., Vogel, H., & Horn, R. (2022). Mechanical soil database—Part I: Impact of bulk density and organic matter on precompression stress and consequences for saturated hydraulic conductivity. Frontiers in Environmental Science, 10, 793625.

    Article  Google Scholar 

  • Verberne, E., Hassink, J., De Willigen, P., Groot, J., & Van Veen, J. (1990). Modelling organic matter dynamics in different soils. Netherlands Journal of Agricultural Science, 38(3A), 221–238.

    Article  CAS  Google Scholar 

  • Wackernagel, H. (2003). Multivariate geostatistics: an introduction with applications (3rd ed., pp. 79–88). Berlin: Springer.

    Book  Google Scholar 

  • Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38.

    Article  CAS  Google Scholar 

  • Webster, R., & Oliver, M. A. (1990). Statistical methods in soil and land resource survey. Oxford University Press.

    Google Scholar 

  • Wu, J., Jelinski, D. E., Luck, M., & Tueller, P. T. (2000). Multiscale analysis of landscape heterogeneity: Scale variance and pattern metrics. Geographic Information Sciences, 6(1), 6–19.

    Google Scholar 

  • Wu, J., Jones, B., Li, H., & Loucks, O. L. (2006). Scaling and uncertainty analysis in ecology. Methods and applications. Dordrecht: Springer.

    Google Scholar 

  • Zhang, B., Horn, R., & Hallett, P. D. (2005). Mechanical resilience of degraded soil amended with organic matter. Soil Science Society of America Journal, 69(3), 864–871.

    Article  CAS  Google Scholar 

  • Zhang, N., Su, X., Zhang, X., Yao, X., Cheng, T., Zhu, Y., Cao, W., & Tian, Y. (2020). Monitoring daily variation of leaf layer photosynthesis in rice using UAV-based multi-spectral imagery and a light response curve model. Agricultural and Forest Meteorology, 291, 108098.

    Article  Google Scholar 

  • Zhang, Y., Du, Y., Ling, F., Wang, X., & Li, X. (2015). Spectral–spatial based sub-pixel mapping of remotely sensed imagery with multi-scale spatial dependence. International Journal of Remote Sensing, 36(11), 2831–2850.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Bu-Ali Sina University, Hamedan, Iran. Also, this research was partially supported by Iran National Science Foundation (INSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ladan Heydari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heydari, L., Bayat, H. & Castrignanò, A. Scale-dependent geostatistical modelling of crop-soil relationships in view of Precision Agriculture. Precision Agric 24, 1261–1287 (2023). https://doi.org/10.1007/s11119-023-09989-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-023-09989-5

Keywords

Navigation