Skip to main content
Log in

Assessing the precision irrigation potential for increasing crop yield and water savings through simulation

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

In regions such as the Brazilian Cerrado where water availability is low and disputes for water resources are increasing, it is important to evaluate technologies that can increase the efficiency of irrigation. In this scenario, precision irrigation has great potential. However, studies that evaluate the real benefits of precision irrigation are necessary. The present work aimed to assess the precision irrigation potential for increasing crop yield and water savings. To evaluate the possible precision irrigation benefits, two center pivots, acting over soils that had different hydro-physical characteristics, were studied. The available water in the soil (AWC) was used as a reference for irrigation management in two conditions, one considering and one disregarding soil spatial variability. In the management under homogeneous soil conditions, the lowest, the average and the highest AWC values were considered. Management under variable conditions was carried out individually for each pixel with a dimension of 25 m2 (5 × 5 m), considering its real AWC value. Also, four soybean crop sowing dates were considered in a rainy and a dry year. A specific precision irrigation module was developed in Python language to carry out the simulations. The results obtained indicated an average water savings potential of 4.5% in a rainy year and 4.3% in a dry year. The average increased yield potential was 6.4% in the rainy year and 4.0% in the dry year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

Abbreviations

BHBV:

Buriti Vermelho river basin

BHALPA:

Alto Paranapanema river basin

(es–ea):

Vapor saturation deficit, kPa

AWC:

Soil available water capacity, mm cm1

BD:

Bulk density, g cm3

CM:

Conventional management

CM1:

Conventional management using as a reference the lowest soil available water capacity value found in the irrigated area

CM2:

Conventional management using as a reference the average soil available water capacity value found in the irrigated area

CM3:

Conventional management using as a reference the highest soil available water capacity value found in the irrigated area

DAS:

Days after sowing

DEM:

Digital elevation model, m

DP:

Total deep percolation, mm

DPRP:

Deep percolation reduction potential

DY:

Dry year

ea:

Partial vapor pressure, kPa

ECa:

Soil apparent electrical conductivity, mS m1

es:

Vapor saturation pressure, kPa

ETai:

Current daily crop evapotranspiration, mm day1

ETm:

Maximum total evapotranspiration, mm

ETo:

Reference evapotranspiration, mm day1

FC:

Field capacity, %

G:

Soil heat flux, MJ m2 d1

IAI:

Current irrigation adequacy index

Ieq:

Pixels that received equal irrigation depths than the management deficit, %

Igr:

Pixels that received greater irrigation depths than the management deficit, %

Iri :

Applied irrigation depth, mm

Ism:

Pixels that received smaller irrigation depths than the management deficit, %

ISSM:

Irrigation strategy simulation model

IWPP:

Increased water productivity potential from irrigation, kg m3

IYP:

Increased yield potential

JD:

Julian days

Kc:

Average crop coefficient

Ke:

Crop evapotranspiration correction coefficient

Ks:

Soil evaporation reduction coefficient

Ky:

Crop response factor to water stress

PI:

Precision irrigation

PivoBHALPA:

Pivot located in the Alto Paranapanema river basin

PivoBHBV:

Pivot located in the Buriti Vermelho River Basin

PWP:

Permanent wilting point, %

Ri :

Effective rainfall, mm

Rn:

Surface radiation balance, MJ m2 d1

RY:

Rainy year

SD:

Sowing dates

SD1:

Sowing on September 10th

SD2:

Sowing on October 10th

SD3:

Sowing on November 10th

SD4:

Sowing on December 10th

SDI:

Spatial dependence index

SWDi :

Soil moisture deficit on day i, mm

SWDi-1 :

Soil moisture deficit on day i1, mm

T:

Average air temperature, °C

Tmax:

Average maximum temperature, °C

Tmin:

Average minimum temperature, °C

U2 :

Wind speed measured at a height of 2 m, m s1

WP:

Water productivity, kg m3

WSP:

Water savings potential

Ya :

Current crop yield, kg ha1

Ym :

Maximum crop yield, kg ha1

γ*:

Psychrometric constant = 0.063 kPa °C1

Δ:

Slope of the saturation vapor pressure curve, kPa °C1

References

  • Abioye, E. A., Abidin, M. S. Z., Mahmud, M. S. A., Buyamin, S., AbdRahman, M. K. I., Otuoze, A. O., Azwan Ramli, M. S., & Ijike, O. D. (2021). IoT-based monitoring and data-driven modelling of drip irrigation system for mustard leaf cultivation experiment. Information Processing in Agriculture, 8(2), 270–283. https://doi.org/10.1016/j.inpa.2020.05.004

    Article  Google Scholar 

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration: guidelines for computing crop water requirements (FAO. Irrigation and Drainage Paper, 56). Rome, Italy: FAO.

  • Althoff, D., & Rodrigues, L. N. (2019). The expansion of center-pivot irrigation in the cerrado biome. Irriga, 1(1), 56–61.

    Article  Google Scholar 

  • Azevedo, E. B. (2003). Viabilidade do uso do inversor de frequência em sistema de irrigação do tipo pivô central (Viability of using the frequency inverter in center pivot irrigation system). Universidade Federal de Lavras – UFLA, Brazil.

  • Bastiaanssen, W. G. M., & Steduto, P. (2017). Science of the total environment the water productivity score (WPS ) at global and regional level: Methodology and fi rst results from remote sensing measurements of wheat, rice and maize. Science of the Total Environment, 575, 595–611. https://doi.org/10.1016/j.scitotenv.2016.09.032

    Article  CAS  PubMed  Google Scholar 

  • Bhatti, S., Heeren, D. M., Barker, J. B., Neale, C. M. U., Woldt, W. E., Maguire, M. S., & Rudnick, D. R. (2020). Site-specific irrigation management in a sub-humid climate using a spatial evapotranspiration model with satellite and airborne imagery. Agricultural Water Management, 230, 105950. https://doi.org/10.1016/j.agwat.2019.105950

    Article  Google Scholar 

  • Bwambale, E., Abagale, F. K., & Anornu, G. K. (2022). Smart irrigation monitoring and control strategies for improving water use efficiency in precision agriculture: A review. Agricultural Water Management, 260, 107324. https://doi.org/10.1016/j.agwat.2021.107324

    Article  Google Scholar 

  • Cambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B., Karlen, D. L., Turco, R. F., & Konopka, A. E. (1994). Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58, 1501–1511.

    Article  Google Scholar 

  • Cambra Baseca, C., Sendra, S., Lloret, J., & Tomas, J. (2019). A smart decision system for digital farming. Agronomy, 9(5), 216. https://doi.org/10.3390/agronomy9050216

    Article  Google Scholar 

  • da Silva, E. M., & de Azevedo, J. A. (2002). Influência do período de centrifugação na curva de retenção de água em solos de Cerrado (Influence of the centrifugation period on the water retention curve in Cerrado soils). Pesquisa Agropecuária Brasileira, 37(10), 1487–1494.

    Article  Google Scholar 

  • Doorenbos, J., & Kassam, A. H. (1979). Yield response to water. Irrigation and Drainage Paper 33.

  • EMBRAPA. (1979). Serviço Nacional de Levantamento e Conservação de Solos (National Soil Survey and Conservation Service). Rio de Janeiro, RJ, Brazil: Reunião Técnica de Levantamento de Solos.

  • EMBRAPA. (2011). O novo mapa de solos do Brasil: Legenda atualizada (The new soil map of Brazil: Updated legend). RJ, Brazil.

    Google Scholar 

  • FAO. (2017). The future of food and agriculture—Trends and challenges. Italy.

    Google Scholar 

  • FEALQ (2014). Análise Territorial para o Desenvolvimento da Agricultura Irrigada no Brasil (Territorial Analysis for the Development of Irrigated Agriculture in Brazil). Piracicaba, SP, Brazil: Fundação de Estudos Agrários Luiz de Queiroz.

  • Giotto, E., Cardoso, C. D. V, Sebem, E., & Pires, F. S. (2016). Agricultura de Precisão no Sistema CR Campeiro 7 (1st ed.) (Precision Agriculture in the CR Campeiro 7 System (1st ed.)). Santa Maria, Brazil: CESPOL.

  • González Perea, R., Daccache, A., Rodríguez Díaz, J. A., Camacho Poyato, E., & Knox, J. W. (2018). Modelling impacts of precision irrigation on crop yield and in-field water management. Precision Agriculture, 19, 497–512. https://doi.org/10.1007/s11119-017-9535-4

    Article  Google Scholar 

  • Hassan, S. I., Alam, M. M., Illahi, U., Al Ghamdi, M. A., Almotiri, S. H., & Su’ud, M. M. (2021). A systematic review on monitoring and advanced control strategies in smart agriculture. IEEE Access, 9, 32517–32548. https://doi.org/10.1109/ACCESS.2021.3057865

    Article  Google Scholar 

  • Hedley, C. B., & Yule, I. J. (2009). Soil water status mapping and two variable-rate irrigation scenarios. Precision Agriculture, 10, 342–355. https://doi.org/10.1007/s11119-009-9119-z

    Article  Google Scholar 

  • Jensen, M. E., & Heermann, D. F. (1970). Meteorological approaches to irrigation scheduling. In Proceedings of the national irrigation symposium, pp 1–11, St Joseph, MI, USA: ASAE.

  • Kang, L., Zhang, R., Wull, L., & An, J. (2011). Linkage control system of water-saving irrigation. Transactions of the Chinese Society of Agricultural Engineering, 37(8), 232–236. https://doi.org/10.3969/j.issn.1002-6819.2011.08.040

    Article  Google Scholar 

  • Kassing, R., Schutter, B. De, & Abraham, E. (2020). Optimal seasonal water allocation and model predictive control for precision irrigation. In: EGU General Assembly Conference Abstracts, 11270. 10.5194/egusphere-egu2020-11270

  • Klein, V. A., Baseggio, M., Madalosso, T., & Marcolin, C. D. (2010). Textura do solo e a estimativa do teor de água no ponto de murcha permanente com psicrômetro (soil texture and water content estimation at permanent wilting point with psychrometer). Ciência Rural, 40(7), 1550–1556. https://doi.org/10.1590/S0103-84782010005000110

    Article  Google Scholar 

  • Klink, C. A. (2014). Policy intervention in the cerrado savannas of brazil: changes in the land use and effects on conservation. A. Consorte-McCrea, and E. Ferraz Santos (Eds.), Ecology and Conservation of the Maned Wolf (Boca Raton, Florida, United States): Multidisciplinary Perspectives, pp 293–308.

  • LaRue, J. L. (2011). Variable rate irrigation 2010 field results. Paper No. 1110787. St Joseph, MI, USA: ASABE

  • Levidow, L., Zaccaria, D., Maia, R., Vivas, E., Todorovic, M., & Scardigno, A. (2014). Improving water-efficient irrigation: Prospects and difficulties of innovative practices. Agricultural Water Management, 146, 84–94. https://doi.org/10.1016/j.agwat.2014.07.012

    Article  Google Scholar 

  • Li, X., Zhao, W., Li, J., & Li, Y. (2019). Maximizing water productivity of winter wheat by managing zones of variable rate irrigation at different deficit levels. Agricultural Water Management, 216, 153–163. https://doi.org/10.1016/j.agwat.2019.02.002

    Article  Google Scholar 

  • Miller, K. A., Luck, J. D., Heeren, D. M., Lo, T., Martin, D. L., & Barker, J. B. (2018). A geospatial variable rate irrigation control scenario evaluation methodology based on mining root zone available water capacity. Precision Agriculture, 19, 666–683. https://doi.org/10.1007/s11119-017-9548-z

    Article  Google Scholar 

  • Moreira, J. M. M. A. P., Sousa, T. C. R. de, Souza, M. A. de, Aguiar, J. L. P. de, Belchior, E. B., & Rodrigues, L. N. (2010). Caracterização dos produtores do núcleo rural do buriti vermelho: aspectos sociais, geográficos e de uso do solo e da água (Characterization of producers in the rural nucleus of Buriti Vermelho: social, geographic and soil and water use aspects). Planaltina-DF: Embrapa Cerrados: Boletim de Pesquisa e Desenvolvimento-Embrapa Cerrados.

  • Neupane, J., & Guo, W. (2019). Agronomic basis and strategies for precision water management: A review. Agronomy, 9(2), 87. https://doi.org/10.3390/agronomy9020087

    Article  CAS  Google Scholar 

  • O’Shaughnessy, S. A., Kim, M., Andrade, M. A., Colaizzi, P. D., & Evett, S. R. (2020). Site-specific irrigation of grain sorghum using plant and soil water sensing feedback—Texas high plains. Agricultural Water Management, 240, 106273. https://doi.org/10.1016/j.agwat.2020.106273

    Article  Google Scholar 

  • Passo, D. P., Rodrigues, L. N., Reatto, A., & Martins, E. de S. (2014). Mapeamento de solos da Bacia Hidrográfica do Rio Buriti Vermelho, DF (Soil mapping of the Buriti Vermelho River Basin, DF). In Embrapa Cerrados-Artigo em anais de congresso (ALICE). In: SEMINÁRIO DA REDE AGROHIDRO, 2., 2014, Campinas. Impactos da agricultura e das mudanças climáticas nos recursos hídricos: anais. Brasília, DF, pp 183–185.

  • Payero, J. O., Tarkalson, D. D., Irmak, S., Davison, D., & Petersen, J. L. (2009). Effect of timing of a deficit-irrigation allocation on corn evapotranspiration, yield, water use efficiency and dry mass. Agricultural Water Management, 96, 1387–1397. https://doi.org/10.1016/j.agwat.2009.03.022

    Article  Google Scholar 

  • Pereira, P. A. A., Martha, G. B., Jr., Santana, C. A. M., & Alves, E. (2012). The development of Brazilian agriculture: Future technological challenges and opportunities. Agriculture and Food Security, 1(4), 1–12.

    Google Scholar 

  • Pereira, P. H. C., Colombo, A., Rabelo, G. F., & Soares, D. de A. (2013). O uso da engenharia de automação na redução do consume de energia elétrica em um sistema de irrigação por pivô central (The use of automation engineering in reducing electrical energy consumption in a center pivot irrigation system). Simpósio Brasileiro de Automação Inteligente, pp 163–168. https://doi.org/10.14684/SHEWC.13.2013.163-168

  • Qiuming, K., Yandong, Z., & Chenxiang, B. (2007). Automatic monitor and control system of water saving irrigation. Transactions of the Chinese Society of Agricultural Engineering, 6, 136–139.

    Google Scholar 

  • R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing,. Vienna, Austria. https://www.r-project.org/

  • Reichardt, K. (1987). A água em sistemas agrícolas (Water in agricultural systems). São Paulo, Brazil: Manole.

  • Resende, Á. V, Shiratsuchi, L. S., Coelho, A. M., Corazza, E. J., Vilela, M. F., Inamasu, R. Y., et al. (2010). Agricultura de Precisão no Brasil: Avanços, Dificuldades e Impactos no Manejo e Conservação do Solo, Segurança Alimentar e Sustentabilidade (Precision Agriculture in Brazil: Advances, Difficulties and Impacts in Soil Management and Conservation, Food Security and Sustainability). In: XVIII Reunião Brasileira de Manejo e Conservação do Solo e da Água,Teresina: Embrapa Meio-Noroeste: Universidade Federal do Piauí.

  • Rodrigues, L. N., Sano, E. E., Steenhuis, T. S., & Passo, D. P. (2012). Estimation of small reservoir storage capacities with remote sensing in the Brazilian Savannah region. Water Resources Management, 26, 873–882. https://doi.org/10.1007/s11269-011-9941-8

    Article  Google Scholar 

  • Rodrigues, L. N., & Maia, A. de H. N. (2011). Funções de pedotransferência para estimar a condutividade hidráulica saturada e as umidades de saturação e residual do solo em uma bacia hidrográfica do Cerrado (Pedotransfer functions to estimate saturated hydraulic conductivity, saturation and residual soil moisture in a Cerrado watershed). In Embrapa Meio Ambiente-Artigo em anais de congresso (ALICE). In Simpósio Brasileiro de Recursos Hídricos, 19, 2011, Maceió. Anais... Maceió: Associação Brasileira de Recursos Hídricos, 2011, 12.

  • Rodrigues, L. N., & Moreira, J. M. M. A. P. (2015). Desenvolvimento de um modelo de simulação de estratégias de irrigação (Development of a simulation model of irrigation strategies). In Anais do III Inovagri International Meeting-2015. INOVAGRI/INCT-EI, Fortaleza, Ceará, Brasil, 1817–1825. https://doi.org/10.12702/iii.inovagri.2015-a197

  • Rodrigues, L. N., Ramos, M. M., Pruski, F. F., Silva, D. D. da, & Silveira, S. F. R. (2003). Análise do desempenho da irrigação em áreas da bacia do rio São Francisco (Analysis of irrigation performance in areas of the São Francisco River basin). In: XIII Congress of Irrigation and Drainage. Juazeiro, Bahia, Brazil.

  • Sadler, E. J., Evans, R. G., Stone, K. C., & Camp, C. R. (2005). Opportunities for conservation with precision irrigation. Journal of Soil and Water Conservation, 60(6), 371–378.

    Google Scholar 

  • Silva, A. J., Monteiro, M. do S. L., & Silva, M. V. da. (2015). Contrapontos da consolidação do agronegócio no cerrado brasileiro (Counterpoints of the consolidation of agribusiness in the Brazilian cerrado). Sociedade e Território—Natal, 27(3), 95–114.

  • Stewart, J. I., Hagan, R. M., Pruitt, W. O., Danielson, R. E., Franklin, W. T., Hanks, R. J., et al. (1977). Optimising crop production through control and water salinity levels. Utah Water Research Laboratory, Utah State University. Logan, Utah, United States. Paper 67, 191.

  • Vories, E., O’Shaughnessy, S., Sudduth, K., Evett, S., Andrade, M., & Drummond, S. (2021). Comparison of precision and conventional irrigation management of cotton and impact of soil texture. Precision Agriculture, 22(2), 414–431. https://doi.org/10.1007/s11119-020-09741-3

    Article  Google Scholar 

  • Wendt, D. E., Rodrigues, L. N., Dijksma, R., & Van Dam, J. C. (2015). Assessing groundwater potential use for expanding irrigation in the Buriti Vermelho watershed. Irriga, 1, 81–94.

    Article  Google Scholar 

  • Yari, A., Gilbert, L., Madramootoo, C. A., Woods, S. A., & Adamchuk, V. I. (2020). Optimum irrigation strategy to maximize yield and quality of potato: A case study in southern Alberta Canada. Irrigation and Drainage. https://doi.org/10.1002/ird.2556

    Article  Google Scholar 

  • Yari, A., Madramootoo, C. A., Woods, S. A., & Adamchuk, V. I. (2017). Performance evaluation of constant versus variable rate irrigation. Irrigation and Drainage, 66(4), 501–509. https://doi.org/10.1002/ird.2131

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the data providers: the Brazilian Agricultural Research Corporation (EMBRAPA Cerrados) for the soil data collected in the Buriti Vermelho River Watershed and fundamental information for conducting the research; the company Green Resultados em Gestão LTDA for apparent electrical conductivity data; and the owners of Fazenda Pinhalzinho for allowing part of the research to be carried out on the property.

Funding

This study was funded in part by the Brazilian Agricultural Research Corporation (EMBRAPA Cerrados), the Southwest São Paulo Association of Irrigation and Planting in Straw (ASPIPP), the Federal University of Viçosa (UFV), the National Council for Scientific and Technological Development (CNPq—Case number 132397/2019-6), and by the Coordination for the Improvement of Higher Education Personnel—Brazil (CAPES—Financing Code 001).

Author information

Authors and Affiliations

Authors

Contributions

Study design: SAS and LNR. Material preparation, data collection and analysis: SAS and LNR. Writing and elaboration of the original project: SAS and LNR. Review and editing: SAS, LNR, and FFdaC.

Corresponding author

Correspondence to Silas Alves Souza.

Ethics declarations

Conflict of interest

The authors have no conflict of interest in publishing this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, S.A., Rodrigues, L.N. & da Cunha, F.F. Assessing the precision irrigation potential for increasing crop yield and water savings through simulation. Precision Agric 24, 533–559 (2023). https://doi.org/10.1007/s11119-022-09958-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-022-09958-4

Keywords

Navigation