Skip to main content

Advertisement

Log in

Sugarcane yield mapping based on vehicle tracking

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

The agricultural industry is increasingly reliant upon the development of technologies that employ real-time monitoring of machine performance to generate pertinent information for machine operators, owners, and managers. Yield mapping in particular is an important component of implementing precision agricultural practices and assessing spatial variability. In an attempt to generate yield maps in sugarcane, this research estimated yield in the field based on GPS data from harvesters, tractors and semi-trucks. The method was based on identifying “fill events”, which represent a distance through which the tractor/wagon combination traveled in parallel with the harvester, indicating that the wagon was being filled. Each wagon was filled to approximately 10 Mg of sugarcane, which was divided by the fill event distance and row width to determine the yield in Mg ha−1. A total of 76 fill events were observed from a 7.1 ha harvested area. Based on the estimated yield per fill event, a rudimentary yield map was developed, which was expanded into a generalized yield map for the 7.1 ha harvested area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source Google Earth, 2017

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • ASPRS. (2008). Las specification, V-1.2, the imaging and geospatial information society. http://www.asprs.org/wp-content/uploads/2010/12/asprs_las_format_v12.pdf.

  • Benjamin, C. (2002). Sugar cane yield monitoring system. Baton Rouge: The Department of Biological and Agricultural Engineering, Louisiana State University.

    Google Scholar 

  • Birrell, S. J., Sudduth, K. A., & Borgelt, S. C. (1996). Comparison of sensors and techniques for crop yield mapping. Computers and Electronics in Agriculture, 14(2–3), 215–233. https://doi.org/10.1016/0168-1699(95)00049-6.

    Article  Google Scholar 

  • Bramley, R. G. V. (2009). Lessons from nearly 20 years of precision agriculture research, development, and adoption as a guide to its appropriate application. Crop and Pasture Science, 60(3), 197–217. https://doi.org/10.1071/CP08304.

    Article  Google Scholar 

  • Bramley, R., Deguara, P., Granshaw, B., Jensen, T., Lillford, L., McGillivray, J., et al. (2015). Precision agriculture for the sugarcane industry. Indooroopilly: Sugar Research.

    Google Scholar 

  • Braunbeck, O. A., & Magalhães, P. S. G. (2014). Technological evaluation of sugarcane mechanization. Sugarcane bioethanol—R&D for Productivity and Sustainability, 1, 451–464.

    Google Scholar 

  • Cox, G., Harris, H., & Cox, D. (1999). Application of precision agriculture to sugar cane. Precision Agriculture, 4a, 753–765.

    Google Scholar 

  • Hengl, T. (2009). A practical guide to geostatistical mapping (2nd ed.). Luxembourg: Office for Official Publications of the European Communities.

    Google Scholar 

  • Jensen, T., Baillie, C., Bramley, R., Di Bella, L., Whiteing, C., & Davis, R. (2010). Assessment of sugarcane yield monitoring technology for precision agriculture. In 32nd Annual Conference of the Australian Society of Sugar Cane Technologists (ASSCT 2010). Bundaberg, Australia. http://www.assct.com.au/assct_main.php?page_id=0.

  • Johnson, R. M., & Richard, E. P. (2005). Sugarcane yield, sugarcane quality, and soil variability in Louisiana. Agronomy Journal, 97(3), 760–771. https://doi.org/10.2134/agronj2004.0184.

    Article  Google Scholar 

  • Kingston, G., & Hyde, B. T. (1995). Intra-field variation of commercial cane sugar (CCS) values. In Proceedings of the Australian Society of Sugarcane Technologists (pp. 30–38).

  • Luck, J. D., & Fulton, J. P. (2015). Improving yield map quality by reducing errors through yield data file post-processing. Lincoln, NE: Institute of Agriculture and Natural Resources University of Nebraska-Lincoln Extension.

    Google Scholar 

  • Magalhães, P. S. G., & Cerri, D. G. P. (2007). Yield monitoring of sugar cane. Biosystems Engineering, 96(1), 1–6. https://doi.org/10.1016/j.biosystemseng.2006.10.002.

    Article  Google Scholar 

  • Mailander, M., Benjamin, C., Price, R., & Hall, S. (2010). Sugar cane yield monitoring system. Applied Engineering in Agriculture, 26(2001), 965–970.

    Article  Google Scholar 

  • Mathanker, S. K., Buss, J. C., Gan, H., Larsen, J. F., & Hansen, A. C. (2015). Stem bending force and hydraulic system pressure sensing for predicting napiergrass yield during harvesting. Computers and Electronics in Agriculture, 111, 174–178. https://doi.org/10.1016/j.compag.2015.01.007.

    Article  Google Scholar 

  • Meyer, J., Rein, P., Turner, P., Mathias, K., & McGregor, C. (2011). Good management practices manual for the cane sugar industry (final). Washington, DC: The International Finance Corporation.

    Google Scholar 

  • Mitas, L., & Mitasova, H. (1999). Spatial interpolation. In P. Longley, M. F. Goodchild, D. J. Maguire, & D. W. Rhind (Eds.), Geographical information systems: Principles, techniques, management and applications. (pp. 481–492). New York: Wiley. http://skagit.meas.ncsu.edu/~helena/gmslab/papers/hgint39.pdf.

  • Molin, J. P., & Engineer, A. (2004). Field-testing of a sugar cane yield monitor in Brazil. In ASAE/CSAE Annual International Meeting (Vol. 0300, p. 12). https://doi.org/10.13031/2013.16159.

  • Momin, M. A., Wempe, P. A., Grift, T. E., & Hansen, A. C. (2017). Effects of four base cutter blade designs on sugarcane stem cut quality. Transactions of the ASABE, 60(5), 1551–1560.

    Article  Google Scholar 

  • Noureldin, N. A., Aboelghar, M. A., Saudy, H. S., & Ali, A. M. (2013). Rice yield forecasting models using satellite imagery in Egypt. The Egyptian Journal of Remote Sensing and Space Science, 16(1), 125–131. https://doi.org/10.1016/j.ejrs.2013.04.005.

    Article  Google Scholar 

  • Pagnano, N. B., & Magalhães, P. S. G. (2001). Sugarcane yield measurement. In Proceedings of 3rd European Conference on Precision Agriculture, France.

  • Palaniswami, C., Gopalasundaram, P., & Bhaskaran, A. (2011). Application of GPS and GIS in sugarcane agriculture. Sugar Tech, 13(4), 360–365. https://doi.org/10.1007/s12355-011-0098-9.

    Article  CAS  Google Scholar 

  • Ping, J. L., & Dobermann, A. (2005). Processing of yield map data. Precision Agriculture, 6(2), 193–212. https://doi.org/10.1007/s11119-005-1035-2.

    Article  Google Scholar 

  • Price, R. R., Johnson, R. M., & Viator, R. P. (2017). An overhead optical yield monitor for a sugarcane harvester based on two optical distance sensors mounted above the loading elevator. Applied Engineering in Agriculture, 33(5), 687–693.

    Article  Google Scholar 

  • Price, R. R., Johnson, R. M., Viator, R. P., Larsen, J., & Peters, A. (2011). Fiber optic yield monitor for a sugarcane harvester. Transactions of the ASABE, 54(2007), 31–39.

    Article  Google Scholar 

  • Price, R. R., Larsen, J., & Peters, A. (2007). Development of an optical yield monitor for sugar cane harvesting. ASABE Annual International Meeting, 0300(07), 27. https://doi.org/10.13031/2013.23546.

    Article  Google Scholar 

  • QGIS. (2017). QGIS user guide: Release 2.14. https://docs.qgis.org/2.14/pdf/en/QGIS-2.14-UserGuide-en.pdf.

  • Roel, A., & Plant, R. (2004). Spatiotemporal analysis of rice yield variability in two california fields. Agronomy Journal, 96(1), 77–90. https://doi.org/10.2134/agronj2004.1481.

    Article  Google Scholar 

  • Silva, C. B., de Moraes, M. A. F. D., & Molin, J. P. (2011). Adoption and use of precision agriculture technologies in the sugarcane industry of São Paulo state, Brazil. Precision Agriculture, 12(1), 67–81. https://doi.org/10.1007/s11119-009-9155-8.

    Article  Google Scholar 

  • Simmonds, M. B., Plant, R. E., Peña-Barragán, J. M., van Kessel, C., Hill, J., & Linquist, B. A. (2013). Underlying causes of yield spatial variability and potential for precision management in rice systems. Precision Agriculture, 14(5), 512–540. https://doi.org/10.1007/s11119-013-9313-x.

    Article  Google Scholar 

  • Wendte, K. W., Skotnikov, A., Ridge, B., Thomas, K. K., & Park, O. (2001). Sugarcane yield monitor. US Patent No. 6,272,819 B1.

Download references

Acknowledgements

This project was funded by the Energy Biosciences Institute, University of Illinois at Urbana-Champaign. The authors would like to thank Mr. Brandon Gravois from Edgard, LA for his support in conducting the field experiments on his farm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan C. Hansen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momin, M.A., Grift, T.E., Valente, D.S. et al. Sugarcane yield mapping based on vehicle tracking. Precision Agric 20, 896–910 (2019). https://doi.org/10.1007/s11119-018-9621-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-018-9621-2

Keywords

Navigation