Skip to main content

Advertisement

Log in

Stochastic simulation of maize productivity: spatial and temporal uncertainty in order to manage crop risks

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

There is emerging interest in evaluating the uncertainty of agricultural production to support the production process and for guidance in decision making. The main objective of this work was to estimate the spatial and temporal maize yield uncertainty using stochastic simulation techniques to reduce the economic risk considering the producer risk profile and the international prices of maize and inputs. The results showed that (i) the class yield percentage variation in yield stochastic simulation depends on the sampling density; (ii) higher sampling densities promote an overestimation of low and high yield values compared to those of real yield data; (iii) reducing sampling density promotes the low and high values of overestimation reduction while increasing the central classes values compared to those of real yield data; (iv) the ideal point density for yield stochastic simulation is approximately 65 points/ha; (v) in Mediterranean environments, more than 3–4 years’ worth of real yield data considered as a whole do not seem to improve the parcel level of confidence when cropping irrigated maize; and (vi) the number of equi-probable surfaces that were generated by sequential Gaussian simulation helped to calculate the yield class uncertainty and permitted the study of class yield probabilities for a particular position of the parcel and, therefore, to manage the yield risk and support future decisions. The approach that is presented in this paper may increase prior knowledge of agricultural parcel behavior in the absence of multi-year data, thereby increasing the possibility of reducing economic risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amirinejad, A. A., Kamble, K., Aggarwal, P., Chakraborty, D., Pradhan, S., & Mittal, R. B. (2011). Assessment and mapping of spatial variation of soil physical health in a farm. Geoderma, 160, 292–303. doi:10.1016/j.geoderma.2010.09.021.

    Article  CAS  Google Scholar 

  • Ayoubi, S., Zamani, S. M., & Khormali, F. (2007). Spatial variability of some soil properties for site specific farming in northern Iran. International Journal of Plant Production, 1(2), 225–235.

    Google Scholar 

  • Basso, B., Cammarano, D., Chen, D., Cafiero, G., Amato, M., Bitella, G., et al. (2009). Landscape position and precipitation effects on spatial variability of wheat yield and grain protein in Southern Italy. Journal of Agronomy and Crop Science, 195, 301–312. doi:10.1111/j.1439-037X.2008.00351.x.

    Article  Google Scholar 

  • Basso, B., Ritchie, J. T., Pierce, F. J., Braga, R. P., & Jones, J. W. (2001). Spatial validation of crop models for precision agriculture. Agricultural Systems, 68(2), 97–112.

    Article  Google Scholar 

  • Batchelor, W. D., Basso, B., & Paz, J. O. (2002). Examples of strategies to analyze spatial and temporal yield variability using crop models. European Journal of Agronomy, 18, 141–158.

    Article  Google Scholar 

  • BioMedware (2012). SpaceStat 3.6.5. Geospatial Research and Software. Ann Arbor, MI, Washington, USA.

  • Blackmore, B. S., & Moore, M. R. (1999). Remedial correction of yield map data. Precision Agriculture Journal, 1, 53–66.

    Article  Google Scholar 

  • Cambardella, C. A., & Karlen, D. L. (1999). Spatial analysis of soil fertility parameters. Precision Agriculture, 1, 5–14.

    Article  Google Scholar 

  • Cambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B., Karlen, D. L., Turco, R. F., & Konopka, A. E. (1994). Field scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58, 1501–1511.

    Article  Google Scholar 

  • Casa, R., & Castrignanò, A. (2008). Analysis of spatial relationships between soil and crop variables in a durum wheat field using a multivariate geostatistical approach. European Journal of Agronomy, 28, 331–342.

    Article  Google Scholar 

  • Diacono, M., Castrignanò, A., Troccoli, A., De Benedetto, D., Basso, B., & Rubino, P. (2012). Spatial and temporal variability of wheat grain yield and quality in a Mediterranean environment: A multivariate geostatistical approach. Field Crops Research, 131, 49–62.

    Article  Google Scholar 

  • ESRI. (2009). ARCGIS 933. Redlands, CA: Environmental Systems Research Institute.

    Google Scholar 

  • FAO (1998).World reference base for soil resources. World Soil Resources Reports, 84. Food and Agriculture Organization of the United Nations. Rome. http://www.fao.org/docrep/W8594E/W8594E00.htm. Accessed 10 September 2012.

  • Goovaerts, P. (1998a). Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties. Biology and Fertility of Soils, 27, 315–334.

    Article  CAS  Google Scholar 

  • Goovaerts, P. (1998b). Accounting for estimation optimality criteria in simulated annealing. Mathematical Geology, 30(5), 511–534. doi:10.1023/A:1021738027334.

    Article  Google Scholar 

  • Goovaerts, P. (1999). Geostatistics in soil science: State-of-the-art and perspectives. Geoderma, 89, 1–45. doi:10.1016/S0016-7061(98)00078-0.

    Article  Google Scholar 

  • Goovaerts, P. (2000). Estimation or simulation of soil properties? Na optimization problem with conflicting criteria. Geoderma, 97, 165–186. doi:10.1016/S0016-7061(00)00037-9.

    Article  Google Scholar 

  • Hansen, J. W., & Jones, J. W. (2000). Scaling-up crop models for climate variability applications. Agricultural Systems, 65(1), 43–72. doi:10.1016/S0308-521X(00)00025-1.

    Article  Google Scholar 

  • IBM, SPSS Statistics. (2009). PASW Statistic 18.0.0. Statistical Package for the Social Sciences. New York: IBM Corporation.

    Google Scholar 

  • Isaaks, E. H., & Srivastava, R. M. (1989). An introduction to applied geostatistics. New York: Oxford University Press. Chapter 7.

    Google Scholar 

  • Kravchenko, A. N., & Bullock, D. G. (2002). Spatial variability of soybean quality data as a function of field topography: I. Spatial data analysis. Crop Science, 42, 804–815. doi:10.2135/cropsci2002.8040.

    Article  Google Scholar 

  • Kroulík, M., Mimra, M., Kumhala, F., Prošek, V. (2006). Mapping spatial variability of soil properties and yield by using geostatic method. Research in Agricultural Engineering, 1, 17–24.

    Google Scholar 

  • Moral, F. J., Terrón, J. M., & Marques da Silva, J. R. (2010). Delineation of management zones using mobile measurements of soil apparent electrical conductivity and multivariate geostatistical techniques. Soil & Tillage Research, 106, 335–343. doi:10.1016/j.still.2009.12.002.

    Article  Google Scholar 

  • Murteira, B., Ribeiro, C. S., Silva, J. A., & Pimenta, C. (2010). Introdução à estatística (Introduction to statistics). Escolar Editora: Lisboa. (Chapter 1).

    Google Scholar 

  • Nourzadeh, M., Mahdian, M. H., Malakouti, M. J., & Khavazi, K. (2012). Investigation and prediction spatial variability in chemical properties of agricultural soil using geostatistics. Archives of Agronomy and Soil Science, 58(5), 461–475. doi:10.1080/03650340.2010.532124.

    Article  Google Scholar 

  • Oliver, M. A. (2010). An overview of geostatistics and precision agriculture. In M. Oliver (Ed.), Geostatistical applications for precision agriculture. Chapter 1 (pp. 1–34). Dordrecht: Springer. doi:10.1007/978-90-481-9133-8.

    Chapter  Google Scholar 

  • Panagopoulos, T., de Jesus, J., Blumberg, D., & Ben-Asher, J. (2014). Spatial variability of durum wheat yield as related to soil parameters in an organic field. Communications in Soil Science and Plant Analysis, 45(15), 2018–2031. doi:10.1080/00103624.2014.919311.

    Article  CAS  Google Scholar 

  • Remy, N. (2002). Stanford geostatistical modeling software. Stanford: Leland Stanford University.

    Google Scholar 

  • Schepers, A. R., Shanahan, J. F., Liebig, M. A., Schepers, J. S., Johnson, S. H., & Luchiari, A, Jr. (2004). Appropriateness of management zones for characterizing spatial variability of soil properties and irrigated corn yields across years. Agronomy Journal, 96, 195–203. doi:10.2134/agronj2004.1950.

    Article  Google Scholar 

  • Soares, A. (2006). Geoestatística para as Ciências da Terra e do Ambiente (Geostatistics for Earth Sciences and Environment). Colecção Ensino da Ciência e da Tecnologia (2nd ed.). Lisboa: IST Press.

    Google Scholar 

  • Virgilio, N. D., Monti, A., & Venturi, G. (2007). Spatial variability of switchgrass (Panicum virgatum L.) yield as related to soil parameters in a small field. Field Crops Research, 101, 232–239. doi:10.1016/j.fcr.2006.11.009.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Eng. Castro Duarte for all of his material and immaterial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. L. Grifo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21406 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grifo, A.R.L., da Silva, J.R.M. Stochastic simulation of maize productivity: spatial and temporal uncertainty in order to manage crop risks. Precision Agric 16, 668–689 (2015). https://doi.org/10.1007/s11119-015-9401-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-015-9401-1

Keywords

Navigation