Skip to main content
Log in

Perturbation norm inequalities for elementary operators generated by analytic functions with positive Taylor coefficients

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

Let \({f(z){\mathop {=}\limits ^{\tiny \mathrm{def}}}\sum _{m=0}^\infty c_mz^m}\) be an analytic function with positive Taylor coefficients \(c_m\geqslant 0,\) with \(R_f>0\) as its radius of convergence, let \(T,S:{\mathbb R}\rightarrow {{\mathbb {C}}}\) be trigonometrical polynomials and \(f_{TS,t},f_{{\bar{T}}T,t},f_{{\bar{S}}S,t}\) their associated analytic functions. Let also \(\{{{A}_n}\}_{n=1}^\infty ,\{{{B}_n}\}_{n=1}^\infty ,\{{{C}_n}\}_{n=1}^\infty \) and \(\{{{D}_n}\}_{n=1}^\infty \) be strongly square summable families in each of them consisting of mutually commuting normal operators, satisfying also that \(A_mC_n=C_nA_m\) and \(B_mD_n=D_nB_m\) for all \(m,n\in {{\mathbb {N}}}.\) Then for any symmetrically norming function \(\Phi ,\) for any and \(t\in {{\mathbb {R}}},\) such that

$$\begin{aligned}&\Biggl \vert \!\Biggl \vert \!\,\!\biggl \vert {\!\,\!\sum _{n=1}^\infty \!(A_n^*A_n^{}\!\;\!\!-C_n^*C_n^{}\;\!\!)\!}\biggr \vert ^{\!\,\!\frac{1}{2}}\!\!\biggl ({\!\;\!\!f_{TS,t}\!\Biggl ({\!\,\!\sum _{n=1}^\infty \!A_n{\otimes } B_n\!\;\!\!}\Biggr )\;\!\!X\!\,\!-\!\,\!f_{TS,t}\!\Biggl ({\!\,\!\sum _{n=1}^\infty \!C_n{\otimes } D_n\!\;\!\!}\Biggr )\;\!\!X\!\!\,\!}\biggr )\nonumber \\&\qquad \times \biggl \vert {\sum _{n=1}^\infty (B_n^{}B_n^*\!\,\!-D_n^{}D_n^*)}\biggr \vert ^\frac{1}{2}\Biggr \vert \!\Biggr \vert _\Phi \nonumber \\&\quad \leqslant \Biggl \vert \!\Biggl \vert \;\!\!\biggl \vert {f_{{\bar{T}}T\!\,\!,t}\!\,\!\Biggl ({\sum _{n=1}^\infty \!\,\!A_n^*A_n^{}\!\;\!\!}\Biggr ) -\!\,\!f_{{\bar{T}}T\!\,\!,t}\!\,\!\Biggl ({\sum _{n=1}^\infty C_n^*C_n^{}\!\;\!\!}\Biggr )\;\!\!}\biggr \vert ^\frac{1}{2}\!\!\sum _{n=1}^\infty (A_nXB_n\!\,\!-C_nXD_n\!\,\!)\nonumber \\&\qquad \times \biggl \vert {f_{{\bar{S}}S,t}\!\,\!\Biggl ({\sum _{n=1}^\infty \!\,\!B_n^{}B_n^*\!}\Biggr ) -f_{{\bar{S}}S,t}\!\,\!\Biggl ({\sum _{n=1}^\infty \!\,\!D_n^{}D_n^*\!}\Biggr )\;\!\!}\biggr \vert ^\frac{1}{2}\Biggr \vert \!\Biggr \vert _\Phi , \!\!\!\;\!\! \end{aligned}$$
(1)

if \(\max \bigl \{{\bigl \vert {\!\bigl \vert {\!\,\!\sum \nolimits _{n=1}^\infty \!\,\!A_n^*A_n^{}\!\,\!}\bigr \vert \!}\bigr \vert ,\bigl \vert {\!\bigl \vert {\!\,\!\sum \nolimits _{n=1}^\infty \!\,\!B_n^{}B_n^*\!\,\!}\bigr \vert \!}\bigr \vert , \bigl \vert {\!\bigl \vert {\!\,\!\sum \nolimits _{n=1}^\infty \!\,\!C_n^*C_n^{}\!\,\!}\bigr \vert \!}\bigr \vert ,\bigl \vert {\!\bigl \vert {\!\,\!\sum \nolimits _{n=1}^\infty \!\,\!D_n^{}D_n^*\!\,\!}\bigr \vert \!}\bigr \vert }\bigr \}< R_f.\) We also provide versions of the inequality (1) for Q, Q\(^*\) and the Schatten-von Neumann ideals of compact operators, with reduced requirements for the normality and commutativity for the observed families, if \(\sum _{n=1}^\infty (A_n^{}A_n^*-C_n^{}C_n^*)\) or \(\sum _{n=1}^\infty (B_n^*B_n^{}-D_n^*D_n^{})\) is a semi-definite operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement:

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Bhatia, R.: Matrix Analysis. Springer-Verlag, New York (1997)

    Book  Google Scholar 

  2. Daleckii, J.L., Krein, M.G.: Stability of Solutions of Differential Equations in Banach Space. Translations of mathematical monographs. American Mathematical Society, (2002)

  3. Gohberg, I.C., Krein, M.G.: Introduction to the Theory of Linear Non-selfadjoint Operators, Transl. Math. Monographs, Vol. 18, Amer. Math. Soc. Providence, R.I. (1969)

  4. Hiai, F.: Matrix analysis: Matrix monotone functions, matrix means and majorization. Interdisciplinary Information Sciences 16, 139–248 (2010). https://doi.org/10.4036/iis.2010.139

    Article  MathSciNet  MATH  Google Scholar 

  5. Jocić, D.R.: Cauchy-Schwarz and means inequalities for elementary operators in into norm ideals. Proc. Amer. Math. Soc. 128, 2705–2713 (1998)

    Article  Google Scholar 

  6. Jocić, D.R.: The Cauchy-Schwarz norm inequality for elementary operators in Schatten ideals. J. London. Math. Soc. 60, 925–934 (1999)

    Article  MathSciNet  Google Scholar 

  7. Jocić, D.R.: Cauchy-Schwarz norm inequalities for weak*-integrals of operator valued functions. J. Funct. Anal. 218, 318–346 (2005)

    Article  MathSciNet  Google Scholar 

  8. Jocić, D.R.: Interpolation norms between row and column spaces and the norm problem for elementary operators. Linear Alg. Appl. 430, 2961–2974 (2009)

    Article  MathSciNet  Google Scholar 

  9. Jocić, D.R.: Multipliers of elementary operators and comparison of row and column space Schatten \(p\) norms. Linear Alg. Appl. 431, 2062–2070 (2009)

    Article  MathSciNet  Google Scholar 

  10. Jocić, D.R., Krtinić, Đ., Lazarević, M.: Cauchy-Schwarz inequalities for inner product type transformers in Q* norm ideals of compact operators, Positivity 24, 933-956 (2020)

  11. Jocić, D.R., Milošević, S., Đurić, V.: Norm inequalities for elementary operators and other inner product type integral transformers with the spectra contained in the unit disc, Filomat 31, 197-206 (2017)

  12. Jocić, D.R., Milošević, S.: Refinements of operator Cauchy-Schwarz and Minkowski inequalities for p-modified norms and related norm inequalities. Linear Alg. Appl. 488, 284–301 (2016)

    Article  MathSciNet  Google Scholar 

  13. Jocić, D.R., Lazarević, M., Milošević, S.: Norm inequalities for a class of elementary operators generated by analytic functions with non-negative Taylor coefficients in ideals of compact operators related to p-modified unitarily invariant norms. Linear Alg. Appl. 540, 60–83 (2018)

    Article  MathSciNet  Google Scholar 

  14. Jocić, D.R., Lazarević, M., Milošević, S.: Inequalities for generalized derivations of operator monotone functions in norm ideals of compact operators. Linear Alg. Appl. 586, 43–63 (2020)

    Article  MathSciNet  Google Scholar 

  15. Simon, B.: Trace Ideals and Their Applications, Amer. Math. Soc., Mat. Surveys and Monographs, Vol.120, (2005)

Download references

Acknowledgements

The author Danko R. Jocić has been partially supported by MPNTR grant No. 174017, Serbia. The author Milan Lazarević has been partially supported by MPNTR grant No. 174017, Serbia. The author Matija Milović has been partially supported by MPNTR grant No. 174017, Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matija Milović.

Ethics declarations

Disclosure statement:

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jocić, D.R., Lazarević, M. & Milović, M. Perturbation norm inequalities for elementary operators generated by analytic functions with positive Taylor coefficients. Positivity 26, 62 (2022). https://doi.org/10.1007/s11117-022-00923-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11117-022-00923-z

Keywords

Mathematics Subject Classification

Navigation