Skip to main content
Log in

Local grand Lebesgue spaces on quasi-metric measure spaces and some applications

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

We introduce local grand Lebesgue spaces, over a quasi-metric measure space \( ( X,d, \mu ) \), where the Lebesgue space is “aggrandized” not everywhere but only at a given closed set F of measure zero. We show that such spaces coincide for different choices of aggrandizers if their Matuszewska–Orlicz indices are positive. Within the framework of such local grand Lebesgue spaces, we study the maximal operator, singular operators with standard kernel, and potential type operators. Finally, we give an application to Dirichlet problem for the Poisson equation, taking F as the boundary of the domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greco, L., Iwaniec, T., Sbordone, C.: Inverting the \(p\)-harmonic operator. Manuscr. Math. 92, 249–258 (1997). https://doi.org/10.1007/BF02678192

    Article  MathSciNet  MATH  Google Scholar 

  2. Iwaniec, T., Sbordone, C.: On the integrability of the Jacobian under minimal hypotheses. Arch. Ration. Mech. Anal. 119, 129–143 (1992). https://doi.org/10.1007/BF00375119

    Article  MathSciNet  MATH  Google Scholar 

  3. Samko, S.G., Umarkhadzhiev, S.M.: Riesz fractional integrals in grand Lebesgue spaces. Fract. Calc. Appl. Anal. 19(3), 608–624 (2016). https://doi.org/10.1515/fca-2016-0033

    Article  MathSciNet  MATH  Google Scholar 

  4. Samko, S.G., Umarkhadzhiev, S.M.: On grand Lebesgue spaces on sets of infinite measure. Math. Nachr. 290(5–6), 913–919 (2017). https://doi.org/10.1002/mana.201600136

    Article  MathSciNet  MATH  Google Scholar 

  5. Samko, S.G., Umarkhadzhiev, S.M.: On Iwaniec-Sbordone spaces on sets which may have infinite measure. Azerb. J. Math. 1(1), 67–84 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Umarkhadzhiev, S.M.: Generalization of the notion of grand Lebesgue space. Russ. Math. 58(4), 35–43 (2014). https://doi.org/10.3103/S1066369X14040057

    Article  MathSciNet  MATH  Google Scholar 

  7. Edmunds, D.E., Kokilashvili, V., Meskhi, A.: Sobolev-type inequalities for potentials in grand variable exponent Lebesgue spaces. Math. Nachr. 292(10), 2174–2188 (2019). https://doi.org/10.1002/mana.201800239

    Article  MathSciNet  MATH  Google Scholar 

  8. Fiorenza, A., Gupta, B., Jain, P.: The maximal theorem in weighted grand Lebesgue spaces. Stud. Math. 188(2), 123–133 (2008). https://doi.org/10.4064/sm188-2-2

    Article  MATH  Google Scholar 

  9. Fiorenza, A., Formica, M.R., Gogatishvili, A., Kopaliani, T., Rakotoson, J.M.: Characterization of interpolation between grand, small or classical Lebesgue spaces. Nonlinear Anal. 177, 422–453 (2018). https://doi.org/10.1016/j.na.2017.09.005

    Article  MathSciNet  MATH  Google Scholar 

  10. Jain, P., Singh, A.P., Singh, M., Stepanov, V.: Sawyer’s duality principle for grand Lebesgue spaces. Math. Nachr. 292(4), 841–849 (2019). https://doi.org/10.1002/mana.201700312

    Article  MathSciNet  MATH  Google Scholar 

  11. Kokilashvili, V., Meskhi, A.: A note on the boundedness of the Hilbert transform in weighted grand Lebesgue spaces. Georgian Math. J. 16(3), 547–551 (2009)

    Article  MathSciNet  Google Scholar 

  12. Kokilashvili, V., Meskhi, A.: Fractional integrals with measure in grand Lebesgue and morrey spaces. Integral Transforms Spec. Funct. 32(9), 695–709 (2020). https://doi.org/10.1080/10652469.2020.1833003

    Article  MathSciNet  MATH  Google Scholar 

  13. Rafeiro, H., Samko, S., Umarkhadzhiev, S.: Grand Lebesgue sequence spaces. Georgian Math. J. 25(2), 291–302 (2018). https://doi.org/10.1515/gmj-2018-0017

    Article  MathSciNet  MATH  Google Scholar 

  14. Kokilashvili, V., Meskhi, A., Rafeiro, H., Samko, S.: Integral operators in non-standard function spaces. In: Variable Exponent Hölder, Morrey–Campanato and grand Spaces. Operator Theory: Advances and Applications, Vol 2. vol. 249. Birkhäuser, Basel (2016). https://doi.org/10.1007/978-3-319-21018-6

  15. Samko, S.G., Umarkhadzhiev, S.M.: Local grand Lebesgue spaces. Vladikavkaz Math. J. 23(4), 96–108 (2021). https://doi.org/10.46698/e4624-8934-5248-n

    Article  MathSciNet  Google Scholar 

  16. Aimar, H., Carena, M., Durán, R., Toschi, M.: Powers of distances to lower dimensional sets as Muckenhoupt weights. Acta Math. Hungar. 143(1), 119–137 (2014). https://doi.org/10.1007/s10474-014-0389-1

    Article  MathSciNet  MATH  Google Scholar 

  17. Dyda, B., Ihnatsyeva, L., Lehrbäck, J., Tuominen, H., Vähäkangas, A.V.: Muckenhoupt \(A_p\)-properties of distance functions and applications to hardy-sobolev-type inequalities. Potential Anal. 50(1), 83–105 (2019). https://doi.org/10.1007/s11118-017-9674-2

    Article  MathSciNet  MATH  Google Scholar 

  18. Duran, R.G., Sanmartino, M., Toschi, M.: Weighted a priori estimates for the poisson equation. Indiana Univ. Math. J. 57(7), 3463–3478 (2008). https://doi.org/10.1512/iumj.2008.57.3427

    Article  MathSciNet  MATH  Google Scholar 

  19. Coifman, R.R., Weiss, G.: Analyse Harmonique Non-commutative sur Certaines Espaces Homegenes. Lecture Notes in Mathematics, vol. 242. Springer, Berlin (1971)

  20. Edmunds, D.E., Kokilashvili, V., Meskhi, A.: Bounded and Compact Integral Operators. Mathematics and its Applications, vol. 543. Kluwer, Dordrecht (2002)

    MATH  Google Scholar 

  21. Matuszewska, W., Orlicz, W.: On some classes of functions with regard to their orders of growth. Stud. Math. 26, 11–24 (1965). https://doi.org/10.4064/sm-26-1-11-24

    Article  MathSciNet  MATH  Google Scholar 

  22. Samko, N.G.: Weighted Hardy operators in the local generalized vanishing Morrey spaces. Positivity 17(3), 683–706 (2013). https://doi.org/10.1007/s11117-012-0199-z

    Article  MathSciNet  MATH  Google Scholar 

  23. Rafeiro, H., Samko, S., Umarkhadzhiev, S.: Grand Lebesgue space for \(p = \infty \) and its application to sobolev-adams embedding theorems in borderline cases. Math. Nachr. 295(4), 1–10 (2022). https://doi.org/10.1002/mana.202000347

    Article  Google Scholar 

  24. Hewitt, E., Stromberg, K.: Real and Abstract Analysis: A Modern Treatment of the Theory of Functions of a Real Variable. Springer, Heidelberg (1965)

    Book  Google Scholar 

  25. Fraser, J.M.: Assouad Dimension and Fractal Geometry. Cambridge Tracts in Mathematics, vol. 222. Cambridge University Press, Cambridge (2021)

    Google Scholar 

  26. Lehrbäck, J., Tuominen, H.: A note on the dimensions of Assouad and Aikawa. J. Math. Soc. Japan 65(2), 343–356 (2013). https://doi.org/10.2969/jmsj/06520343

    Article  MathSciNet  MATH  Google Scholar 

  27. Cruz-Uribe, D.: Extrapolation and factorization. Function Spaces, Embeddings and Extrapolation X, Proceedings of the spring school in Analysis, Paseky nad Jizerou 2017. MATFYZPRESS, Prague 2017, xiv+155, Eds J. Lukěs, L. Pick

  28. Gustavsson, J.: On interpolation of weighted \(L^ p\)-spaces and Ovchinnikov’s theorem. Stud. Math. 72, 237–251 (1982). https://doi.org/10.4064/sm-72-3-237-251

    Article  MathSciNet  MATH  Google Scholar 

  29. Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. Grundlehren der Mathematischen Wissenschaften, vol. 223. Springer, Cham (1976)

    Book  Google Scholar 

  30. Hytönen, T., Pérez, C., Rela, E.: Sharp reverse Hölder property for \(A_{\infty }\) weights on spaces of homogeneous type. J. Funct. Anal. 263(12), 3883–3899 (2012). https://doi.org/10.1016/j.jfa.2012.09.013

    Article  MathSciNet  MATH  Google Scholar 

  31. Hofmann, S.: Weighted norm inequalities and vector valued inequalities for certain rough operators. Indiana Univ. Math. J. 42(1), 1–14 (1993). https://doi.org/10.1512/iumj.1993.42.42001

    Article  MathSciNet  MATH  Google Scholar 

  32. Kokilashvili, V., Mastylo, M., Meskhi, A.: Calderón-Zygmund singular operators in extrapolation spaces. J. Funct. Anal. 279(10), 21 (2020). https://doi.org/10.1016/j.jfa.2020.108735

    Article  MATH  Google Scholar 

  33. Alberico, T., Cianchi, A., Sbordone, C.: Fractional integrals and \(A_p\)-weights: a sharp estimate. C. R. Math. Acad. Sci. Paris 347(21–22), 1265–1270 (2009). https://doi.org/10.1016/j.crma.2009.09.001

    Article  MathSciNet  MATH  Google Scholar 

  34. Stein, E.M.: Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series, vol. 43. Princeton University Press, Princeton, NJ (1993)

    Google Scholar 

  35. Macías, R.A., Segovia, C.: A well-behaved quasidistance for spaces of homogeneous type. Trab. Mat. Inst. Argent. Mat. 32, 1–18 (1981)

    Google Scholar 

Download references

Acknowledgements

H. Rafeiro was supported by a Research Start-up Grant of United Arab Emirates University via Grant No. G00002994. The research of S. Samko was supported by Russian Foundation for Basic Research under the grant 19-01-00223 and TUBITAK and Russian Foundation for Basic research under the grant 20-51-46003. The research of S. Umarkhadzhiev was supported by TUBITAK and Russian Foundation for Basic Research under the grant 20-51-46003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humberto Rafeiro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafeiro, H., Samko, S. & Umarkhadzhiev, S. Local grand Lebesgue spaces on quasi-metric measure spaces and some applications. Positivity 26, 53 (2022). https://doi.org/10.1007/s11117-022-00915-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11117-022-00915-z

Keywords

Mathematics Subject Classification

Navigation