Skip to main content
Log in

GRAND LEBESGUE SPACES ON QUASI-METRIC MEASURE SPACES OF INFINITE MEASURE

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Grand Lebesgue spaces, well-known on sets of finite measure, are studied on general measure spaces \((X,\mu )\) with admission of \(\mu (X)=\infty\). In this case, the grand space is defined via the so-called grandizer. It is shown that the classical Lebesgue space is embedded into the grand Lebesgue space if and only if the grandizer is in \(L^1(X)\). Embedding between grand Lebesgue spaces with different grandizers is also considered. The main results concern the boundedness of maximal, singular, and fractional operators in grand Lebesgue spaces over quasi-metric measure spaces \((X,d, \mu )\). Application to such operators over \(\mathbb S^{n-1}\) and homogeneous groups on \(\mathbb {R}^n\) is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable

References

  1. A.-P. Calderón. Inequalities for the maximal function relative to a metric. Studia Math., 57(3):297–306, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. R. Coifman and G. Weiss. Analyse harmonique non-commutative sur certaines espaces homegenes, volume 242. Lecture Notes Math., 1971. 160 pages.

  3. M. Dunford and J. T. Schwartz. Linear Operators. General Theory. Interscience Publ., 1953. 542 pages.

  4. D. E. Edmunds, V. Kokilashvili, and A. Meskhi. Bounded and compact integral operators, volume 543 of Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht, 2002.

  5. A. Fiorenza, B. Gupta, and P. Jain. The maximal theorem in weighted grand Lebesgue spaces. Studia Math., 188(2):123–133, 2008. https://doi.org/10.4064/sm188-2-2.

  6. G.B. Folland and E.M. Stein. Hardy Spaces on Homogeneous Groups. Princeton University Press, Princeton, 1982.

    MATH  Google Scholar 

  7. J. Garcia-Cuerva and J.L. Rubio de Francia. Weighted Norm Inequalities and Related Topics. Elsiver, 1985.

  8. I. Genebashvili, A. Gogatishvili, V. Kokilashvili, and M. Krbec. Weight theory for integral transforms on spaces of homogeneous type. Pitman Monographs and Surveys, Pure and Applied mathematics: Longman Scientific and Technical, 1998. 422 pages.

  9. L. Grafacos. Classical Fourier Analysis. Springer, 2014.

  10. L. Greco, T. Iwaniec, and C. Sbordone. Inverting the \(p\)-harmonic operator. Manuscripta Math., 92:249–258, 1997. https://doi.org/10.1007/BF02678192.

    Article  MathSciNet  MATH  Google Scholar 

  11. V. Guliyev. Boundedness of singular integral operators on the Heisenberg group in weighted generalized-Hölder and weighted \(l_p\)-spaces (russian). Dokl. Akad. Nauk SSSR, 316(2):270–278, 1991.: translation in Soviet Math. Dokl., 43(1):58–62, 1991.

  12. E. Hewitt and K. Stromberg. Real and Abstract Analysis: A modern treatment of the theory of functions of a real variable. Springer-Verlag Berlin Heidelberg, 1965.

    Book  MATH  Google Scholar 

  13. T. Hytonen, C. Perez, and E. Rela. Sharp reverse holder property for \(a_\infty\) weights on spaces of homogeneous type. Journal of Functional Analysis, 263(12):3883–3899, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  14. T. Iwaniec and C. Sbordone. On the integrability of the Jacobian under minimal hypotheses. Arch. Rational Mech. Anal., 119:129–143, 1992. https://doi.org/10.1007/BF00375119.

    Article  MathSciNet  MATH  Google Scholar 

  15. V. Kokilashvili, M. Mastylo, and M. Meskhi. Calderon-Zygmund singular operators in extrapolation spaces. Journal of Functional Analysis, 279(10):108735, 2020. https://doi.org/10.1016/j.jfa.2020.108735.

    Article  MathSciNet  MATH  Google Scholar 

  16. V. Kokilashvili and A. Meskhi. On some weighted inequalities for fractional integrals on nonhomogeneous spaces. Zeitshr. Anal. Anwend., 24(4):871–885, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  17. V. Kokilashvili and A. Meskhi. A note on the boundedness of the Hilbert transform in weighted grand Lebesgue spaces. Georgian Math. J., 16(3):547–551, 2009. https://doi.org/10.1515/GMJ.2009.547.

    Article  MathSciNet  MATH  Google Scholar 

  18. V. Kokilashvili and A. Meskhi. Trace inequalities for fractional integrals in grand Lebesgue spaces. Studia Math., 210(2):159–176, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  19. V. Kokilashvili and A. Meskhi. Potentials with product kernels in grand Lebesgue spaces: One-weight criteria. Lithuanian Mathematical Journal, 53(1):27–39, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  20. V. Kokilashvili and A. Meskhi. Fractional integrals with measure in grand Lebesgue and Morrey spaces. Integral Transforms and Special Functions, 32(9):695–709, 2021. https://doi.org/10.1080/10652469.2020.1833003.

    Article  MathSciNet  MATH  Google Scholar 

  21. V. Kokilashvili and A. Meskhi. Maximal and singular integral operators in weighted grand variable exponent Lebesgue spaces. Ann. Funct. Anal, 48(12):12–48, 2021.

    MathSciNet  MATH  Google Scholar 

  22. V. Kokilashvili, A. Meskhi, H. Rafeiro, and S. Samko. Integral Operators in Non-standard Function Spaces. Vol. 2: Variable exponent Hölder, Morrey–Campanato and Grand Spaces. Birkhäuser, 2016.

  23. A. Meskhi. Weighted criteria for the Hardy transform under the \(B_p\) condition in grand Lebesgue spaces and some applications. J. Math. Sci., 178(6):622–636, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Nagel and E. M. Stein. Lectures on Pseudo-Differential Operators. Mathematical Notes 24. Princeton University Press, Princeton, 1979.

  25. E. Nakai and K. Yabuta. Pointwise multipliers for functions of weighted bounded mean oscillation on spaces of homogeneous type. Mathematica Japonica, 46:15–28, 1997.

    MathSciNet  MATH  Google Scholar 

  26. H. Rafeiro and S. Samko. On embeddings of Morrey type spaces between weighted Lebesgue or Stummel spaces with application to Herz spaces. Banach J. Math. Anal., 15(3), 2021. https://doi.org/10.1007/s43037-021-00128-8.

  27. S. Samko. Hypersingular Integrals and their Applications. London-New-York: Taylor & Francis, Series "Analytical Methods and Special Functions"  vol. 5, 2002. 358 + xvii pages.

  28. S. Samko and S. Umarkhadzhiev. Riesz fractional integrals in grand Lebesgue spaces. Fract. Calc. Appl. Anal., 19(3):608–624, 2016. https://doi.org/10.1515/fca-2016-0033.

    Article  MathSciNet  MATH  Google Scholar 

  29. S. Samko and S. Umarkhadzhiev. On grand Lebesgue spaces on sets of infinite measure. Mathematische Nachrichten, 290(5-6):913–919, 2017. https://doi.org/10.1002/mana.201600136.

    Article  MathSciNet  MATH  Google Scholar 

  30. S. G. Samko and S. M. Umarkhadzhiev. On Iwaniec–Sbordone spaces on sets which may have infinite measure. Azerb. J. Math., 1(1):67–84, 2011. https://www.azjm.org/volumes/1-1.html.

  31. S. G. Samko and S. M. Umarkhadzhiev. Grand Morrey type spaces. Vladikavkaz. Mat. Zh., 22(4):104–118, 2020. https://doi.org/10.46698/c3825-5071-7579-i.

  32. E. M. Stein. Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals. Princeton University Press, Princeton, 1993.

    MATH  Google Scholar 

  33. E. M. Stein and G. Weiss. Fractional integrals on n-dimensional Euclidean space. J. Math. and Mech., 7(4):503–514, 1958.

    MathSciNet  MATH  Google Scholar 

  34. J.-O. Strömberg and A. Torchinsky. Weighted Hardy spaces, volume 1381 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1989.

  35. S. M. Umarkhadzhiev. Generalization of the notion of grand Lebesgue space. Russian Math., 58(4):35–43, 2014. https://doi.org/10.3103/S1066369X14040057.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The research of V. Guliyev was supported by grant of Cooperation Program 2532 TUBITAK - RFBR (RUSSIAN foundation for basic research) (Agreement number no. 119N455).

The research of S. Samko and S. Umarkhadzhiev was supported by RFBR and TUBITAK according to the research project No 20-51-46003.

The research of S. Umarkhadzhiev was supported by the Ministry of Science and Higher Education RF, agreement N 075-02-2023-924 dated 16.02.2023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Umarkhadzhiev.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guliyev, V., Samko, S. & Umarkhadzhiev, S. GRAND LEBESGUE SPACES ON QUASI-METRIC MEASURE SPACES OF INFINITE MEASURE. J Math Sci 271, 568–582 (2023). https://doi.org/10.1007/s10958-023-06578-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-023-06578-9

Keywords

Mathematics Subject Classification (2010)

Navigation