Skip to main content
Log in

On log-hyponormal operators

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

LetTB(H) be a bounded linear operator on a complex Hilbert spaceH.TB(H) is called a log-hyponormal operator itT is invertible and log (TT *)≤log (T * T). Since log: (0, ∞)→(−∞,∞) is operator monotone, for 0<p≤1, every invertiblep-hyponormal operatorT, i.e., (TT *)p≤(T * T)p, is log-hyponormal. LetT be a log-hyponormal operator with a polar decompositionT=U|T|. In this paper, we show that the Aluthge transform\(\tilde T = |T|^s U|T|^t \) is\(\frac{{\min (s,t)}}{{s + t}}\). Moreover, ifmeas (σ(T))=0, thenT is normal. Also, we make a log-hyponormal operator which is notp-hyponormal for any 0<p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Aluthge,On p-hyponormal operators for 0<p<1, Integr. Equat. Oper. Th.,13 (1990), 307–315.

    Google Scholar 

  2. A. Aluthge,Some generalized theorems on p-hyponormal operators, Integr. Equat. Oper. Th.,24 (1994). 497–501.

    Google Scholar 

  3. A. Aluthge and D. Xia,A trace estimate of (T * T)p-(TT *)p, Integr. Equat. Oper. Th.,12 (1989), 300–303.

    Google Scholar 

  4. T. Ando,Operators with a norm condition, Acta Sci. Math.,33, (1972), 169–178.

    Google Scholar 

  5. M. Chõ and M. Itoh,Putnam's inequality for p-hyponormal operators, Proc. Amer. Math. Soc.,123 (1995), 2435–2440.

    Google Scholar 

  6. R. E. Curto, P. S. Muhly and D. Xia,A trace estimate for p-hyponormal operators, Integr. Equat. Oper. Th.,6 (1983), 507–514.

    Google Scholar 

  7. M. Fujii, J. Jiang, E. Kamei,Characterization of chaotic order and its application to Furuta inequality, Proc. Amer. Math. Soc., (to appear).

  8. M. Fujii, J. Jiang, E. Kamei, K. Tanahashi,A characterization of chaotic order and a problem, J. Inequal. Appl.,2, (1988), 149–156.

    Google Scholar 

  9. M. Fujii and Y. Nakatsu,On subclasses of hyponormal operators, Proc. Japan Acad.,51 (1975), 243–246.

    Google Scholar 

  10. T. Furuta, A≥B≥O assures\((B^r A^p B^r )^{\tfrac{1}{q}} \geqslant B^{\tfrac{{p + 2r}}{q}} for{\text{ }}r \geqslant 0, p \geqslant 0,q \geqslant 0{\text{ }}with (1 + 2r)q \geqslant (p + 2r)\), Proc. Amer. Math. Soc.,101 (1987), 85–88.

    Google Scholar 

  11. T. Furuta,Generalized Aluthge transformation on p-hyponormal operators, Proc. Amer. Math. Soc.,124 (1996), 3071–3075.

    Google Scholar 

  12. T. Furuta and M. Yanagida,Further extension of Aluthge transformation on p-hyponormal operators, Integr. Equat. Oper. Th.,29 (1997), 122–125.

    Google Scholar 

  13. T. Furuya,A note on p-hyponormal operators, Proc. Amer. Math. Soc.,125 (1997), 3617–3624.

    Google Scholar 

  14. E. Heinz,Beiträge zur Störungstheorie der Spektralzerlegung, Math. Ann.123 (1951), 415–438.

    Google Scholar 

  15. K. Löwner,Über monotone Matrixfunktionen, Math. Z.,38 (1934), 177–216.

    Google Scholar 

  16. S. M. Patel,A note on p-hyponormal operators for 0<p<1 Integr. Equat. Oper. Th.,21 (1995), 498–503.

    Google Scholar 

  17. D. Xia,Spectral theory of hyponormal operatots, Birkhauser Verlag, Boston, 1983.

    Google Scholar 

  18. T. Yoshino,The p-hyponormality of the Aluthge transform. Interdisciplinary Information Sciences,3 (1997), 91–93.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by Grant-in-Aid Research No. 10640185

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanahashi, K. On log-hyponormal operators. Integr equ oper theory 34, 364–372 (1999). https://doi.org/10.1007/BF01300584

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01300584

AMS classification numbers

Navigation