Skip to main content
Log in

On the peripheral spectrum of positive operators

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

This paper contributes to the analysis of the peripheral (point) spectrum of positive linear operators on Banach lattices. We show that, under appropriate growth and regularity conditions, the peripheral point spectrum of a positive operator is cyclic and that the corresponding eigenspaces fulfil a certain dimension estimate. A couple of examples demonstrates that some of our theorems are optimal. Our results on the peripheral point spectrum are then used to prove a sufficient condition for the peripheral spectrum of a positive operator to be cyclic; this generalizes theorems of Lotz and Scheffold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekhno, E.A.: Some properties of essential spectra of a positive operator. Positivity 11(3), 375–386 (2007). doi:10.1007/s11117-007-2088-4

    Article  MathSciNet  MATH  Google Scholar 

  2. Alekhno, E.A.: Some properties of essential spectra of a positive operator, II. Positivity 13(1), 3–20 (2009). doi:10.1007/s11117-008-2221-z

    Article  MathSciNet  MATH  Google Scholar 

  3. Arendt, W., Grabosch, A., Greiner, G., Groh, U., Lotz, H.P., Moustakas, U., Nagel, R., Neubrander, F., Schlotterbeck, U.: One-parameter semigroups of positive operators. Lecture Notes in Mathematics, vol. 1184. Springer, Berlin (1986)

  4. Bernau, S.J., Huijsmans, C.B.: On the positivity of the unit element in a normed lattice ordered algebra. Stud. Math. 97(2), 143–149 (1990)

    MathSciNet  MATH  Google Scholar 

  5. Derriennic, Y., Lin, M.: On invariant measures and ergodic theorems for positive operators. J. Funct. Anal. 13, 252–267 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  6. Emel’yanov, E.Y.: Non-Spectral Asymptotic Analysis of One-Parameter Operator Semigroups, Operator Theory: Advances and Applications, vol. 173. Birkhäuser Verlag, Basel (2007)

    MATH  Google Scholar 

  7. Emel’yanov, E.Y., Erkursun, N.: Generalization of Eberlein’s and Sine’s ergodic theorems to LR-nets. Vladikavkaz. Mat. Zh. 9(3), 22–26 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Émilion, R.: Mean-bounded operators and mean ergodic theorems. J. Funct. Anal. 61(1), 1–14 (1985). doi:10.1016/0022-1236(85)90037-0

    Article  MathSciNet  MATH  Google Scholar 

  9. Engel, K.J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Athematics, vol. 194. Springer, New York (2000). With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt

    Google Scholar 

  10. Gao, N.: Extensions of Perron-Frobenius theory. Positivity 17(4), 965–977 (2013). doi:10.1007/s11117-012-0215-3

    Article  MathSciNet  MATH  Google Scholar 

  11. Giaquinta, M., Modica, G.: Mathematical Analysis. Approximation and Discrete Processes. Birkhäuser Boston Inc, Boston (2004). Translated and Revised from the Italian Original

    MATH  Google Scholar 

  12. Glück, J.: A markov operator and a markov semigroup on \({C}({K})\) with non-cyclic peripheral point spectrum. Ulmer Seminare über Funktionalanalysis and Differentialgleichungen 19, 205–209 (2014)

    Google Scholar 

  13. Grobler, J.J.: Spectral theory in Banach lattices. In: Huijsmans, C.B., Kaashoek, M.A., Luxemburg, W.A.J., de Pagter, B. (eds) Operator Theory in Function Spaces and Banach Lattices, vol. 75, pp. 133–172. Birkhäuser, Basel (1995)

  14. Heinrich, S.: Ultraproducts in Banach space theory. J. Reine Angew. Math. 313, 72–104 (1980). doi:10.1515/crll.1980.313.72

    MathSciNet  MATH  Google Scholar 

  15. Keicher, V., Nagel, R.: Positive semigroups behave asymptotically as rotation groups. Positivity 12(1), 93–103 (2008). doi:10.1007/s11117-007-2153-z

    Article  MathSciNet  MATH  Google Scholar 

  16. Kreĭn, M.G., Rutman, M.A.: Linear operators leaving invariant a cone in a Banach space. Am. Math. Soc. Transl. 1950(26), 128 (1950)

    MathSciNet  MATH  Google Scholar 

  17. Krengel, U.: Ergodic theorems, de Gruyter Studies in Mathematics, vol. 6. Walter de Gruyter & Co, Berlin (1985). doi:10.1515/9783110844641. With a supplement by A. Brunel

    Book  Google Scholar 

  18. Krieger, H.J.: Beiträge zur Theorie positiver Operatoren. Akademie-Verlag, Berlin (1969). Schriftenreihe der Institute für Mathematik. Reihe A: Reine Mathematik, Heft 6

  19. Lotz, H.P.: Über das spektrum positiver operatoren. Math. Z. 108, 15–32 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  20. Meyer-Nieberg, P.: Banach Lattices. Universitext. Springer, Berlin (1991). doi:10.1007/978-3-642-76724-1

    Book  MATH  Google Scholar 

  21. Schaefer, H.H.: Banach Lattices and Positive Operators. Springer, New York (1974). Die Grundlehren der mathematischen Wissenschaften, Band 215

    Book  MATH  Google Scholar 

  22. Scheffold, E.: Das Spektrum von Verbandsoperatoren in Banachverbänden. Math. Z. 123, 177–190 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, X.D.: On spectral properties of positive operators. Indag. Math. 4(1), 111–127 (1993). doi:10.1016/0019-3577(93)90057-6

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

I would like to thank Manuel Bernhard and Manfred Sauter for their help in the construction of Example 7.7; moreover, Manfred Sauter assisted me with the proof of Lemma A.4. My thanks also go to Rainer Nagel who suggested the investigation of weakly almost periodic operators in the context of Theorem 5.5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Glück.

Additional information

During his work on this article the author was supported by a scholarship of the “Landesgraduiertenförderung Baden-Württemberg”.

Appendix: The signum operator

Appendix: The signum operator

In this appendix we shortly recall some facts about the signum operator on complex Banach lattices which are needed in the article. First we recall the following result from [3, Section C-I.8]:

Proposition A.1

Let E be a complex Banach lattice and let \(f \in E {\setminus } \{0\}\). Then there exists a unique linear operator \(S_f\) on \(E_{|f|}\) which fulfils the following two conditions:

  1. (a)

    \(S_f \overline{f} = |f|\), where \(\overline{f}\) denotes the complex conjugate vector of f.

  2. (b)

    \(|S_fg| \le |g|\) for all \(g \in E_{|f|}\).

The operator \(S_f\) is called the signum operator associated to \(E_f\). If we identify \(E_{|f|}\) with a \(C(K;\mathbb {C})\)-space (K compact) by means of the Kakutani representation theorem such that |f| corresponds to the constant 1-function on K, then we have \(S_{f}g = fg\) for each \(g \in C(K;\mathbb {C})\) where the multiplication is computed in \(C(K;\mathbb {C})\). Now we come to the major definition in this appendix (compare [3, Definitions B-III.2.2(b) and C-III.2.1]).

Definition A.2

Let E be a complex Banach lattice and let \(f \in E {\setminus } \{0\}\). By means of the Kakutani representation theorem we can identify the principal ideal \(E_{|f|}\) with a \(C(K;\mathbb {C})\)-space for some compact Hausdorff-space K such that |f| corresponds to the constant 1-function on K. Using the multiplication on \(C(K;\mathbb {C})\), we define \(f^{[n]} := f^n\) for each \(n \in \mathbb {Z}\).

Note that \(f^{[n]} = S_f^n |f|\) whenever \(n \ge 0\) and \(f^{[n]} = S_{\overline{f}}^n |f|\) whenever \(n < 0\). This shows that the definition of \(f^{[n]}\) is independent of the choice of the representation \(E \xrightarrow {\sim } C(K;\mathbb {C})\). The following property of \(f^{[n]}\) is important:

Proposition A.3

Let E be a complex Banach lattice and let \(f \in E {\setminus } \{0\}\). Suppose that \(h \in E_+\) with \(f \in E_h\) and identify the principal ideal \(E_h\) with a \(C(K;\mathbb {C})\)-space for some compact Hausdorff space K, where h corresponds to the constant 1-function on K. In the space \(C(K; \mathbb {C})\) the vectors \(f^{[n]}\) are given by

$$\begin{aligned} f^{[n]}(x)= {\left\{ \begin{array}{ll} (\frac{f(x)}{|f(x)|})^n |f(x)| &{} \quad \text {if } f(x) \not = 0 \\ 0 &{} \quad \text {if } f(x) = 0 \text {.} \end{array}\right. } \end{aligned}$$
(1)

Proof

First, let \(n \in \mathbb {N}_0\). Define an operator \(\tilde{S}_{f}\) on \(E_{|f|} = C(K;\mathbb {C})_{|f|}\) which is given by

$$\begin{aligned} \tilde{S}_{f} g(x) = {\left\{ \begin{array}{ll} \frac{f(x)}{|f(x)|} g(x) &{}\quad \text {if } f(x) \not = 0 \\ 0 &{}\quad \text {if } f(x) = 0 \end{array}\right. } \end{aligned}$$

for every \(g \in C(K;\mathbb {C})_{|f|}\) and every \(x \in K\). Then \(\tilde{S}_f\) fulfils properties (a) and (b) from Proposition A.1 and we thus have \(\tilde{S}_f = S_f\). This implies \(f^{[n]} = S_f^n |f| = \tilde{S}_f^n |f|\), which proves the assertion. For \(n < 0\) one argues similarly, using the operators \(\tilde{S}_{\overline{f}}\) and \(S_{\overline{f}}\) instead. \(\square \)

We can now prove the following lemma which is a slight modification of [3, Lemma C-III.3.11].

Lemma A.4

Let E be a complex Banach lattice and let \(G,H \subset E\) be to vector subspaces of E. Let \(n \in \mathbb {Z}\) and assume that \(f^{[n]} \in H\) for each \(f \in G {\setminus } \{0\}\). Then \(\dim G \le \dim H\).

Proof

The proof is very similar to the proof of [3, Lemma C-III.3.11]; for the convenience of the reader, we include it here. Let \(0 < m \le \dim G\), let \(g_1,\ldots ,g_m\) be linearly independent elements of G and define \(u := |g_1| + \cdots + |g_m|\). Then we can identify the principal ideal \(E_u\) with a \(C( K; \mathbb {C})\)-space. There are points \(x_1,\ldots ,x_m \in K\) and functions \(f_1,\ldots ,f_m \in C(K;\mathbb {C})\) with the same linear span as \(g_1,\ldots ,g_m\) which have the property that \(f_j(x_k) = \delta _{jk}\) (where \(\delta _{jk}\) is the Dirac delta) for all \(j,k \in \{1,\ldots ,m\}\); this can easily be seen by an induction over m. By our assumption, we have \(f_j^{[n]} \in H\) for all \(j \in \{1,\ldots ,m\}\) and due to Proposition A.3 we can compute \(f_j^{[n]}\) in \(C(K;\mathbb {C})\) by means of formula (1). Hence, we also have \(f_j^{[n]}(x_k) = \delta _{jk}\) for all \(j,k \in \{1,\ldots ,m\}\) and therefore, the vectors \(f_1^{[n]},\ldots ,f_m^{[n]}\) are linearly independent. Thus \(m \le \dim H\), which proves the assertion. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glück, J. On the peripheral spectrum of positive operators. Positivity 20, 307–336 (2016). https://doi.org/10.1007/s11117-015-0357-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-015-0357-1

Keywords

Mathematics Subject Classification

Navigation