Advertisement

Positivity

, Volume 20, Issue 2, pp 307–336 | Cite as

On the peripheral spectrum of positive operators

  • Jochen GlückEmail author
Article

Abstract

This paper contributes to the analysis of the peripheral (point) spectrum of positive linear operators on Banach lattices. We show that, under appropriate growth and regularity conditions, the peripheral point spectrum of a positive operator is cyclic and that the corresponding eigenspaces fulfil a certain dimension estimate. A couple of examples demonstrates that some of our theorems are optimal. Our results on the peripheral point spectrum are then used to prove a sufficient condition for the peripheral spectrum of a positive operator to be cyclic; this generalizes theorems of Lotz and Scheffold.

Keywords

Positive operator Perron-Frobenius theory Peripheral spectrum Peripheral point spectrum Cyclic Growth condition 

Mathematics Subject Classification

47B65 47A10 

Notes

Acknowledgments

I would like to thank Manuel Bernhard and Manfred Sauter for their help in the construction of Example 7.7; moreover, Manfred Sauter assisted me with the proof of Lemma A.4. My thanks also go to Rainer Nagel who suggested the investigation of weakly almost periodic operators in the context of Theorem 5.5.

References

  1. 1.
    Alekhno, E.A.: Some properties of essential spectra of a positive operator. Positivity 11(3), 375–386 (2007). doi: 10.1007/s11117-007-2088-4 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alekhno, E.A.: Some properties of essential spectra of a positive operator, II. Positivity 13(1), 3–20 (2009). doi: 10.1007/s11117-008-2221-z MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Arendt, W., Grabosch, A., Greiner, G., Groh, U., Lotz, H.P., Moustakas, U., Nagel, R., Neubrander, F., Schlotterbeck, U.: One-parameter semigroups of positive operators. Lecture Notes in Mathematics, vol. 1184. Springer, Berlin (1986)Google Scholar
  4. 4.
    Bernau, S.J., Huijsmans, C.B.: On the positivity of the unit element in a normed lattice ordered algebra. Stud. Math. 97(2), 143–149 (1990)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Derriennic, Y., Lin, M.: On invariant measures and ergodic theorems for positive operators. J. Funct. Anal. 13, 252–267 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Emel’yanov, E.Y.: Non-Spectral Asymptotic Analysis of One-Parameter Operator Semigroups, Operator Theory: Advances and Applications, vol. 173. Birkhäuser Verlag, Basel (2007)zbMATHGoogle Scholar
  7. 7.
    Emel’yanov, E.Y., Erkursun, N.: Generalization of Eberlein’s and Sine’s ergodic theorems to LR-nets. Vladikavkaz. Mat. Zh. 9(3), 22–26 (2007)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Émilion, R.: Mean-bounded operators and mean ergodic theorems. J. Funct. Anal. 61(1), 1–14 (1985). doi: 10.1016/0022-1236(85)90037-0 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Engel, K.J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Athematics, vol. 194. Springer, New York (2000). With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. SchnaubeltGoogle Scholar
  10. 10.
    Gao, N.: Extensions of Perron-Frobenius theory. Positivity 17(4), 965–977 (2013). doi: 10.1007/s11117-012-0215-3 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Giaquinta, M., Modica, G.: Mathematical Analysis. Approximation and Discrete Processes. Birkhäuser Boston Inc, Boston (2004). Translated and Revised from the Italian OriginalzbMATHGoogle Scholar
  12. 12.
    Glück, J.: A markov operator and a markov semigroup on \({C}({K})\) with non-cyclic peripheral point spectrum. Ulmer Seminare über Funktionalanalysis and Differentialgleichungen 19, 205–209 (2014)Google Scholar
  13. 13.
    Grobler, J.J.: Spectral theory in Banach lattices. In: Huijsmans, C.B., Kaashoek, M.A., Luxemburg, W.A.J., de Pagter, B. (eds) Operator Theory in Function Spaces and Banach Lattices, vol. 75, pp. 133–172. Birkhäuser, Basel (1995)Google Scholar
  14. 14.
    Heinrich, S.: Ultraproducts in Banach space theory. J. Reine Angew. Math. 313, 72–104 (1980). doi: 10.1515/crll.1980.313.72 MathSciNetzbMATHGoogle Scholar
  15. 15.
    Keicher, V., Nagel, R.: Positive semigroups behave asymptotically as rotation groups. Positivity 12(1), 93–103 (2008). doi: 10.1007/s11117-007-2153-z MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kreĭn, M.G., Rutman, M.A.: Linear operators leaving invariant a cone in a Banach space. Am. Math. Soc. Transl. 1950(26), 128 (1950)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Krengel, U.: Ergodic theorems, de Gruyter Studies in Mathematics, vol. 6. Walter de Gruyter & Co, Berlin (1985). doi: 10.1515/9783110844641. With a supplement by A. BrunelCrossRefGoogle Scholar
  18. 18.
    Krieger, H.J.: Beiträge zur Theorie positiver Operatoren. Akademie-Verlag, Berlin (1969). Schriftenreihe der Institute für Mathematik. Reihe A: Reine Mathematik, Heft 6Google Scholar
  19. 19.
    Lotz, H.P.: Über das spektrum positiver operatoren. Math. Z. 108, 15–32 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Meyer-Nieberg, P.: Banach Lattices. Universitext. Springer, Berlin (1991). doi: 10.1007/978-3-642-76724-1 CrossRefzbMATHGoogle Scholar
  21. 21.
    Schaefer, H.H.: Banach Lattices and Positive Operators. Springer, New York (1974). Die Grundlehren der mathematischen Wissenschaften, Band 215CrossRefzbMATHGoogle Scholar
  22. 22.
    Scheffold, E.: Das Spektrum von Verbandsoperatoren in Banachverbänden. Math. Z. 123, 177–190 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Zhang, X.D.: On spectral properties of positive operators. Indag. Math. 4(1), 111–127 (1993). doi: 10.1016/0019-3577(93)90057-6 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Institute of Applied AnalysisUlm UniversityUlmGermany

Personalised recommendations