Skip to main content
Log in

New metric for IQ imbalance compensation in optical QPSK coherent systems

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

We report on a simple alternative method for the compensation of quadrature imbalance in optical quadrature phase-shift-keying (QPSK) coherent systems. By introducing a new metric, the phase imbalance can be determined and compensated. The proposed method is theoretically and numerically analyzed. In particular, it is shown that the method exhibits a small bias of estimated phase imbalance value. Thanks to its deterministic property, this bias can be simply compensated by incorporating at the receiver a phase rotator (or phase shift) whose value can be determined based on an analytical analysis. Moreover, the algorithm is also experimentally validated through bit-error-rate and error vector magnitude (EVM) measurements. A good agreement on the performance of the proposed method with that of the Gram–Schmidt orthogonalization procedure is shown in a 20-Gbit/s optical QPSK experiment. The robustness of both methods was verified with up to \(30^\circ \) phase imbalance by comparing the signal with and without phase imbalance compensation. A 10% reduction in EVM is achieved with our method for a high phase imbalance of \(30^\circ \), while the implementation complexity can be reduced owing to the suppression of the use of square-root operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Raybon, G., Adamiecki, A., Winzer, P.J., Randel, S., Salamanca, L., Konczykowska, A., Jorge, F., Dupuy, J.-Y., Buhl, L.L., Chandrashekhar, S., Xie, C., Draving, S., Grove, M., Rush, K., Urbanke, R.: High symbol rate coherent optical transmission systems: 80 and 107 Gbaud. J. Lightwave Technol. 32, 824–831 (2014)

    Article  Google Scholar 

  2. Ip, E., Lau, A.P.T., Barros, D.J.F., Kahn, J.M.: Coherent detection in optical fiber systems. Opt. Express 16, 753–791 (2008)

    Article  Google Scholar 

  3. Valkama, M., Renfors, M., Koivunen, V.: Advanced methods for I/Q imbalance compensation in communication receivers. IEEE Trans. Signal Process. 49, 2335–2344 (2001)

    Article  Google Scholar 

  4. Liu, X.: Receiver sensitivity improvement in optical DQPSK and DQPSK/ASK through data-aided multi-symbol phase estimation. In: Proceeding of ECOC, p. Th.4.4.5 (2006)

  5. Savory, S.J.: Digital filters for coherent optical receivers. Opt. Express 16, 804–817 (2008)

    Article  Google Scholar 

  6. Ip, E., Kahn, J.M.: Compensation of dispersion and nonlinear impairments using digital back propagation. J. Lightwave Technol. 26, 3416–3425 (2008)

    Article  Google Scholar 

  7. Anttila, L., Valkama, M., Renfors, M.: Circularity-based I/Q imbalance compensation in wideband direct-conversion receivers. IEEE Trans. Veh. Technol. 57, 2099–2113 (2008)

    Article  Google Scholar 

  8. Schenk, T.C.W., Smulders, P.F.M., Fledderus, E.R.: Estimation and compensation of frequency selective TX/RX IQ imbalance in MIMO OFDM systems. In: Proceedings of IEEE International Conference on Communications, pp. 251–256 (2006)

  9. Liu, C.-H.: Joint Tx and Rx IQ imbalance compensation of OFDM transceiver in mesh network. In: Proceedings of Globel Telecommunications Conference, pp. 704–708 (2008)

  10. Chung, W.: Transmitter IQ mismatch compensation in coherent optical OFDM systems using pilot signals. Opt. Express 1, 21308–21314 (2010)

    Article  Google Scholar 

  11. Ma, X., Li, K., Bai, Y.: Novel training symbol structure for transmitter IQ mismatch compensation for coherent optical OFDM. IEEE Photon. Technol. Lett. 25, 2047–2049 (2013)

    Article  Google Scholar 

  12. Cao, S., Yu, C., Kam, P.Y.: Decision-aided joint compensation of transmitter IQ mismatch and phase noise for coherent optical OFDM. IEEE Photon. Technol. Lett. 24, 1066–1068 (2012)

    Article  Google Scholar 

  13. Fatadin, I., Savory, S.J., Ives, D.: Compensation of quadrature imbalance in an optical QPSK coherent receiver. IEEE Photon. Technol. Lett. 20, 1733–1735 (2008)

    Article  Google Scholar 

  14. Chang, S.H., Chung, H.S., Kim, K.: Impact of quadrature imbalance in optical coherent QPSK receiver. IEEE Photon. Technol. Lett. 21, 709–711 (2009)

    Article  Google Scholar 

  15. Petrou, C.S., Vgenis, A., Roudas, I., Raptis, L.: Quadrature imbalance compensation for PDM QPSK coherent optical systems. IEEE Photon. Technol. Lett. 21, 1876–1878 (2009)

    Article  Google Scholar 

  16. Qiao, Y., Xu, Y., Li, L., Ji, Y.: Quadrature imbalance compensation algorithm based on statistical properties of signals in CO-QPSK system. Chin. Opt. Lett. 10, 120601 (2012)

    Article  Google Scholar 

  17. Nguyen, T.-H., Gomez-Agis, F., Gay, M., Anet-Neto, L., Scalart, P., Peucheret, C., Joindot, M., Sentieys, O., Simon, J.-C., and Bramerie, L.: IQ imbalance compensation based on maximum SNR estimation in coherent QPSK systems. In: Proceedings of IEEE International Conference on Transparent Optical Network, p. Tu.C1.3 (2014)

  18. Razavi, B.: Design considerations for direct-conversion receivers. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 44, 428–435 (1997)

    Article  Google Scholar 

  19. Cardoso, J.-F., Laheld, B.H.: Equivariant adaptive source separation. IEEE Trans. Signal Process. 44, 3017–3030 (1996)

    Article  Google Scholar 

  20. Vitthaladevuni, P.K., Alouini, M.-S.: A recursive algorithm for the exact BER computation of generalized hierarchical QAM constellations. IEEE Trans. Inf. Theory 49, 297–307 (2003)

    Article  MathSciNet  Google Scholar 

  21. Mizuochi, T.: Recent progress in forward error correction and its interplay with transmission impairments. IEEE J. Sel. Topics Quantum Electron. 12, 544–554 (2006)

    Article  Google Scholar 

  22. OIF: Implementation agreement for integrated dual polarization intradyne coherent receiver. IA# OIF-DPC-RX-01.2

  23. Proakis, J.: Digital Communications (Chap. 5 and 11), 4th edn. McGraw-Hill, New York (2000)

    Google Scholar 

  24. Viterbi, A.J., Viterbi, A.M.: Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission. IEEE Trans. Inf. Theory 29, 543–551 (1983)

    Article  Google Scholar 

  25. McKinley, M.D., Remley, K.A., Myslinski, M., Kenney, J.S., Schreurs, D., Nauwelaers, B.: EVM calculation for broadband modulated signals. In: Proceedings of 64th ARFTG Conf. Dig., pp. 45–52 (2004)

  26. Fatadin, I., Ives, D., Savory, S.J.: Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning. IEEE Photon. Technol. Lett. 22, 631–634 (2010)

    Article  Google Scholar 

  27. Winzer, P.J., Gnauck, A.H., Doerr, C.R., Magarini, M., Buhl, L.L.: Spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM. J. Lightwave Technol. 28, 547–556 (2010)

    Article  Google Scholar 

  28. Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd edn. Springer, New York (1966)

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the French National Research Agency (ANR) in the frame of the OCELOT Project (Ref. ANR-10-VERS-0015), the Contrat de plan Etat-Région Ponant and the French Ministry of Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trung-Hien Nguyen.

Appendices

Appendix A

Based on the definition of the new metric in (4), the squared modulus of r can be written as

$$\begin{aligned} {| r |^2} = {(U + X)^2} + {(V + Y)^2} , \end{aligned}$$
(A.1)

in which the variables U, X, V and Y are defined by

$$\begin{aligned} \left\{ \begin{array}{l} U = \cos {\phi _S}\\ V = \alpha \cdot \cos {\phi _S} + \beta \cdot \sin {\phi _S}\\ X = {n_C}\\ Y = \alpha \cdot {n_C} + \beta \cdot {n_S}\\ \alpha = \sin {\phi _\mathrm{var}} + \sin {\phi _\mathrm{mis}} \cdot \cos {\phi _\mathrm{var}}\\ \beta = \cos {\phi _\mathrm{mis}} \cdot \cos {\phi _\mathrm{var}} \end{array} \right. . \end{aligned}$$
(A.2)

We first calculate the expected value of \({| r |^2}\). From (A.1), the expectation of \(r^2\) is calculated as follows

$$\begin{aligned} \begin{aligned} {\mathbf{E}}\left\{ {{{(U + X)}^2} + {{(V + Y)}^2}} \right\}&= {\mathbf{E}}\left\{ {\left( {{U^2} + {V^2}} \right) } \right\} \\&\quad +\,{\mathbf{E}}\left\{ {\left( {{X^2} + {Y^2}} \right) } \right\} \\&\quad +\, 2{\mathbf{E}}\left( {UX} \right) + 2{\mathbf{E}}\left( {VY} \right) . \end{aligned} \end{aligned}$$
(A.3)

It must be noted that the expected values of U, V, X and Y are zero. On the other hand, U and X, V and Y are uncorrelated so that the last two terms of (A.3) are equal to 0. Moreover, \(\phi _S\) is uniformly distributed over the four values \((2k+1)\cdot \pi /4\), \(k = 0, 1, 2, 3\). Using the quantities defined in (A.2), the variances of U, V and their covariance can be retrieved as

$$\begin{aligned} {\mathbf{E}}\left( {{U^2}} \right) = \frac{1}{2},\quad {\mathbf{E}}\left( {{V^2}} \right) = \frac{1}{2}\left( {{\alpha ^2} + {\beta ^2}} \right) ,\quad {\mathbf{E}}\left( {UV} \right) = \frac{\alpha }{2}. \end{aligned}$$
(A.4)

As mentioned, \(n_C\) and \(n_S\) are random Gaussian variables with the same variance \(\sigma ^2\). The variances of X, Y and their covariance are

$$\begin{aligned} {\mathbf{E}}\left( {{X^2}} \right) = {\sigma ^2},\quad {\mathbf{E}}\left( {{Y^2}} \right) = {\sigma ^2}\left( {{\alpha ^2} + {\beta ^2}} \right) ,\quad {\mathbf{E}}\left( {XY} \right) = \alpha {\sigma ^2}. \end{aligned}$$
(A.5)

Finally, the expected value of \({| r |^2}\) is derived by [as in Eq. (7)]

$$\begin{aligned} {\mathbf{E}}\left( {{{| r |}^2}} \right) = \left( {\frac{1}{2} + {\sigma ^2}} \right) \cdot \left( {1 + {\alpha ^2} + {\beta ^2}} \right) . \end{aligned}$$
(A.6)

The following part is the derivation of the variance of \({\left| r \right| ^2}\). The variance of \({| r |^2}\) can be written as

$$\begin{aligned} {\mathbf{Var}}\left( {{{| r |}^2}} \right) = {\mathbf{E}}\left( {{{| r |}^4}} \right) - {\left[ {{\mathbf{E}}\left( {{{| r |}^2}} \right) } \right] ^2}. \end{aligned}$$
(A.7)

Due to the assumption of central and uncorrelated variables, some terms cancel and the expectation of \({| r |^4}\) can be written as

$$\begin{aligned} \begin{aligned} {\mathbf{E}}\left( {{{| r |}^4}} \right) =&{} {\mathbf{E}}\left[ {{{\left( {{U^2} + {V^2}} \right) }^2}} \right] \\&+ {\mathbf{E}}\left[ {{{\left( {{X^2} + {Y^2}} \right) }^2}} \right] \\&+ 2{\mathbf{E}}\left[ {\left( {{U^2} + {V^2}} \right) .\left( {{X^2} + {Y^2}} \right) } \right] \\&+ 4{\mathbf{E}}\left[ {{{\left( {UX + VY} \right) }^2}} \right] . \end{aligned} \end{aligned}$$
(A.8)

Based on the definition of the QPSK signal, \((U^2 + V^2)\) is a random discrete variable taking on two equiprobable values, \(1/2\cdot (1 + (\alpha + \beta )^2)\) and \(1/2\cdot (1 + (\alpha - \beta )^2)\). The first term of (A.8) can then be derived as

$$\begin{aligned} {\mathbf{E}}\left[ {{{\left( {{U^2} + {V^2}} \right) }^2}} \right] = \frac{1}{4}\left[ {{{\left( {1 + {\alpha ^2} + {\beta ^2}} \right) }^2} + 4{\alpha ^2}{\beta ^2}} \right] . \end{aligned}$$
(A.9)

The second term of (A.8) is calculated using the fact that all the moments of a zero-mean Gaussian variable can be derived from its variance [28]. More specifically, the fourth-order moments of (XY) can be written as

$$\begin{aligned} \left\{ \begin{array}{l} {\mathbf{E}}\left[ {{X^4}} \right] = 3{\sigma ^4}\\ {\mathbf{E}}\left[ {{Y^4}} \right] = 3{\left( {{\alpha ^2} + {\beta ^2}} \right) ^2}{\sigma ^4}\\ {\mathbf{E}}\left[ {{X^2}{Y^2}} \right] = {\mathbf{E}}\left[ {n_C^2{{\left( {\alpha {n_C} + \beta {n_S}} \right) }^2}} \right] = \left( {3{\alpha ^2} + {\beta ^2}} \right) {\sigma ^4} \end{array} \right. . \end{aligned}$$
(A.10)

Therefore, the second term of (A.8) is given by

$$\begin{aligned} {\mathbf{E}}\left\{ {{{\left( {{X^2} + {Y^2}} \right) }^2}} \right\} = \left[ {3 + 2\left( {3{\alpha ^2} + {\beta ^2}} \right) + 3{{\left( {{\alpha ^2} + {\beta ^2}} \right) }^2}} \right] {\sigma ^4}. \end{aligned}$$
(A.11)

\((U^2 + V^2)\) and \((Y^2 + X^2)\) are independent random variables. The third term of (A.8) is then obtained

$$\begin{aligned} \begin{aligned}&{\mathbf{E}}\left[ {\left( {{U^2} + {V^2}} \right) .\left( {{X^2} + {Y^2}} \right) } \right] \\&\quad = {\mathbf{E}}\left[ {\left( {{U^2} + {V^2}} \right) } \right] \cdot {\mathbf{E}}\left[ {\left( {{X^2} + {Y^2}} \right) } \right] \\&\quad = \frac{{{\sigma ^2}}}{2}{\left( {1 + {\alpha ^2} + {\beta ^2}} \right) ^2} \end{aligned}. \end{aligned}$$
(A.12)

Due to the independence property between the variables (UV) and (XY), the last term of (A.8) can be reformulated as

$$\begin{aligned} \begin{aligned} {\mathbf{E}}\left[ {{{\left( {UX + VY} \right) }^2}} \right]&= {\mathbf{E}}\left[ {{U^2}} \right] {\mathbf{E}}\left[ {{X^2}} \right] + 2{\mathbf{E}}\left[ {UV} \right] \cdot {\mathbf{E}}\left[ {XY} \right] \\&\quad +\, {\mathbf{E}}\left[ {{V^2}} \right] \cdot {\mathbf{E}}\left[ {{Y^2}} \right] . \end{aligned} \end{aligned}$$
(A.13)

The last term is expressed as

$$\begin{aligned} {\mathbf{E}}\left[ {{{\left( {UX + VY} \right) }^2}} \right] = \left( {{\alpha ^2} + \frac{{1 + {{\left( {{\alpha ^2} + {\beta ^2}} \right) }^2}}}{2}} \right) \cdot {\sigma ^2}. \end{aligned}$$
(A.14)

From (A.9), (A.11), (A.12) and (A.14), the variance of \({| r |^2}\) is finally derived [as in Eq. (8)]

$$\begin{aligned} {\mathbf{Var}}\left( {{{| r |}^2}} \right) = {\alpha ^2}{\beta ^2} + 2\left( {1 + 2{\alpha ^2} + {{\left( {{\alpha ^2} + {\beta ^2}} \right) }^2}} \right) \cdot \left( {1 + {\alpha ^2}} \right) \cdot {\sigma ^2}. \end{aligned}$$
(A.15)

Appendix B

If \({\phi _0} = \arg \mathop {\max }\limits _{{\phi _\mathrm{var}}} \left( {{D_{\left( {wo} \right) }}\left( {{\phi _\mathrm{var}}} \right) } \right) \) or \(\tan \phi _0 = -\sin \phi _\mathrm{mis}\), we evaluate the first derivative of \(D(\phi )\) at \(\phi = \phi _0\). To do that, the expression of D in Eq. (9) is represented as follows

$$\begin{aligned} D = \frac{{Z{{\left( {1 + {\alpha ^2} + {\beta ^2}} \right) }^2}}}{{{\alpha ^2}{\beta ^2} - 2S{\beta ^2} + S{{\left( {1 + {\alpha ^2} + {\beta ^2}} \right) }^2}}} = \frac{Z}{{S + \frac{{{\beta ^2}\left( {{\alpha ^2} - 2S} \right) }}{{{{\left( {1 + {\alpha ^2} + {\beta ^2}} \right) }^2}}}}}. \end{aligned}$$
(B.1)

where \(Z = (1/2+\sigma ^2)^2\) and \(S = 2\sigma ^2(1+\sigma ^2)\). If we call \({F_S}\left( \phi \right) = \frac{{{\beta ^2}\left( {{\alpha ^2} - 2S} \right) }}{{{{\left( {1 + {\alpha ^2} + {\beta ^2}} \right) }^2}}}\), Eq. (B.1) can be rewritten by

$$\begin{aligned} D = \frac{Z}{{S + {F_S}\left( \phi \right) }}. \end{aligned}$$
(B.2)

By inspecting Eq. (B.2), it can be observed that the extremum of D corresponds to the extremum of \(F_S(\phi )\). Instead of evaluating the first derivative of D at \(\phi = \phi _0\), we can equivalently investigate the first derivative of \(F_S(\phi )\) at \(\phi = \phi _0\). In order to simplify the expression, the following variables and its corresponding derivative at \(\phi = \phi _0\) are established

$$\begin{aligned} \left\{ {\begin{array}{ll} {u = {\alpha ^2}} ,&{}\quad {v = {\beta ^2}} \\ {{u_0} = {{\left. {{\alpha ^2}} \right| }_{\phi = {\phi _0}}} = 0} ,&{}\quad {{v_0} = {{\left. {{\beta ^2}} \right| }_{\phi ={\phi _0}}}} \\ {u{'_0} = {{\left. {\left( {\frac{{\mathrm{d}\left( {{\alpha ^2}} \right) }}{{\mathrm{d}\phi }}} \right) } \right| }_{\phi = {\phi _0}}} = 0}, &{}\quad {v{'_0} = {{\left. {\left( {\frac{{\mathrm{d}\left( {{\beta ^2}} \right) }}{{\mathrm{d}\phi }}} \right) } \right| }_{\phi = {\phi _0}}}} \end{array}} \right. . \end{aligned}$$
(B.3)

The expression of \(F_S(\phi )\) is now given by

$$\begin{aligned} {F_S}\left( \phi \right) = \frac{{v\left( {u - 2S} \right) }}{{{{\left( {1 + u + v} \right) }^2}}} \end{aligned}$$
(B.4)

and its first derivative at \(\phi = \phi _0\) can be established

$$\begin{aligned} {\left. {\frac{{d\left( {{F_S}\left( \phi \right) } \right) }}{{d\phi }}} \right| _{\phi = {\phi _0}}}= & {} \frac{{v{'_0}\left( {{u_0} - 2S} \right) + {v_0}\left( {u{'_0} - 2S} \right) }}{{{{\left( {1 + {u_0} + {v_0}} \right) }^2}}} \nonumber \\&-\,\frac{{2{v_0}\left( {{u_0} - 2S} \right) }}{{{{\left( {1 + {u_0} + {v_0}} \right) }^3}}} \end{aligned}$$
(B.5)

or equivalently,

$$\begin{aligned} {\left. {\frac{{d\left( {{F_S}\left( \phi \right) } \right) }}{{d\phi }}} \right| _{\phi = {\phi _0}}} = \frac{{2S \cdot K}}{{{{\left( {1 + {v_0}} \right) }^2}}} , \end{aligned}$$
(B.6)

in which K is calculated by

$$\begin{aligned} K = \frac{{2{v_0}}}{{1 + {v_0}}} - \left( {{v_0} + v{'_0}} \right) . \end{aligned}$$
(B.7)

Due to the fact that \(\tan \phi _0 = -\sin \phi _\mathrm{mis}\) and from the definition of \(\beta \) in Eq. (6), the values of \(v_0\) and \(v'_0\) can be deduced as follows

$$\begin{aligned} \left\{ {\begin{array}{*{20}{l}} {{v_0} = \frac{{{{\cos }^2}{\phi _\mathrm{mis}}}}{{1 + {{\sin }^2}{\phi _\mathrm{mis}}}}}\\ {v{'_0} = \frac{{2{{\cos }^2}{\phi _\mathrm{mis}}\sin {\phi _\mathrm{mis}}}}{{1 + {{\sin }^2}{\phi _\mathrm{mis}}}}} \end{array}} \right. . \end{aligned}$$
(B.8)

Substituting (B.8) into (B.7), K can be obtained as

$$\begin{aligned} K = \frac{{{{\cos }^2}{\phi _\mathrm{mis}}\sin {\phi _\mathrm{mis}}\left( {\sin {\phi _\mathrm{mis}} - 2} \right) }}{{1 + {{\sin }^2}{\phi _\mathrm{mis}}}}. \end{aligned}$$
(B.9)

From (B.6) and (B.9), it can be concluded that K is different from 0 and hence the first derivative of \(F_S(\phi )\) at \(\phi = \phi _0\) is also not equal to 0 whenever \(S \ne 0\). As a consequence, the first derivative of \(D(\phi )\) at \(\phi = \phi _0\) differs from 0, so the dependence of the maximum value of D on the SNR of the received samples is confirmed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, TH., Scalart, P., Gay, M. et al. New metric for IQ imbalance compensation in optical QPSK coherent systems. Photon Netw Commun 36, 326–337 (2018). https://doi.org/10.1007/s11107-018-0783-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-018-0783-7

Keywords

Navigation