Skip to main content

Advertisement

Log in

Ultrahigh-Temperature HfB2-Based Ceramics: Structure, High-Temperature Strength, and Oxidation Resistance

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Ultrahigh-temperature hafnium diboride ceramics with additions of 15 vol.% MoSi2 or 15 vol.% SiC or a combined addition of 15 vol.% SiC and 5 vol.% WC were produced by hot pressing in the range 1800–2000°C. The density of the produced composite ceramics was >98%. The components interacted in the hot pressing process to form new high-temperature phases (WB, MoB). The graine size of all structural elements did not exceed 5 μm. The maximum bending strength was reached by the HfB2–15 vol.% SiC–5 vol.% WC samples: 587 ± 25 MPa at room temperature and 535 ± 18 MPa at a test temperature of 1800°C, being associated with transcrystalline fracture of the ceramics. A three-layer oxide film formed: the upper layer was borosilicate glass with a HfSiO4 interlayer, the middle layer was HfO2 with B2O3–SiO2 inclusions, and the lower layer consisted of hafnium oxide and inclusions of other oxides. The total thickness of the oxide film was ~50 μm for the material oxidized at 1600°C for 5 h and ~150 μm at 1500°C for 50 h. The highest oxidation resistance was acquired by the HfB2–15 vol.% MoSi2 composite, where the oxidation rate did not exceed ~1 mg/cm2 ∙ h because a dense and homogeneous HfSiO4 layer developed on the surface. However, the most corrosion-resistant zirconium diboride composite, ZrB2–15 vol.% MoSi2, showed an oxidation rate of ~2 mg/cm2 ∙ h. This high oxidation resistance of the hafnium diboride ceramics is explained by slower oxygen diffusion in HfO2 and HfSiO4 than in ZrO2 and ZrSiO4, which is confirmed by mathematical modeling of the oxidation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. R. Savino, M. De Stefano Fumo, L. Silvestroni, and D. Sciti, “Arc-jet testing on HfB2 and HfC-based ultrahigh temperature ceramic materials,” J. Eur. Ceram. Soc., 28, 1899–1907 (2009), https://doi.org/10.1016/j.jeurceramsoc.2007.11.021.

    Article  CAS  Google Scholar 

  2. P. Wang, H. Li, Y. Jia, Y. Zhang, and R. Yuan, “Ablation resistance of HfB2–SiC coating prepared by insitu reaction method for SiC coated C/C composites,” Ceram. Int., 43, 12005–12012 (2017), https://doi.org/10.1016/j.ceramint.2017.06.052.

    Article  CAS  Google Scholar 

  3. P. Wang, S. Zhou, P. Hu, G. Chen, X. Zhang, and W. Han, “Ablation resistance of ZrB2–SiC/SiC coating prepared by pack cementation for graphite,” J. Alloys Compd., 682, 203–207 (2016), https://doi.org/10.1016/j.jallcom.2016.04.010.

    Article  CAS  Google Scholar 

  4. J.S. Peters, B.A. Cook, J.L. Harringa, and A.M. Russell, “Erosion resistance of TiB2–ZrB2 composites,” Wear, 267, 136–143, 2009, https://doi.org/10.1016/j.wear.2009.01.037.

    Article  CAS  Google Scholar 

  5. D.L. McClane, W.G. Fahrenholtz, and G.E. Hilmas, “Thermal properties of (Zr, TM)B2 solid solutions with TM = Ta, Mo, Re, V, and Cr,” J. Am. Ceram. Soc., 98, 637–644 (2015), https://doi.org/10.1111/jace.13341.

    Article  CAS  Google Scholar 

  6. G.J.K. Harrington and G.E. Hilmas, “Thermal conductivity of ZrB2 and HfB2, ultra-high temperature ceramics materials,” Extrem. Environ. Appl., 9, 197–235 (2014), https://doi.org/10.1002/9781118700853.ch9.

    Article  Google Scholar 

  7. W.B. Han, P. Hu, X.H. Zhang, J.C. Han, and S.H. Meng, “High-temperature oxidation at 1900°C of ZrB2–xSiC ultrahigh-temperature ceramic composites,” J. Am. Ceram. Soc., 91, 3328–3334 (2008), https://doi.org/10.1111/j.1551-2916.2008.02660.x.

    Article  CAS  Google Scholar 

  8. O.N. Grigoriev, I.P. Neshpor, T.V. Mosina, V.B. Vinokurov, O.V. Koroteev, O.V. Buryachek, D.V. Vedel, A.M. Stepanchuk, and L. Silvestroni, “Behavior of high-temperature ZrB2-based ceramics in oxidation,” Powder Metall. Met. Ceram., 56, No. 9–10, 573–580 (2018).

    Article  CAS  Google Scholar 

  9. L. Silvestroni, H.J. Kleebe, W.G. Fahrenholtz, and J. Watts, “Super-strong materials for temperatures exceeding 2000°C,” Sci. Rep., 7, 1–8 (2017), https://doi.org/10.1038/srep40730.

    Article  CAS  Google Scholar 

  10. Y.H. Seong and D.K. Kim, “Oxidation behavior of ZrB2–xSiC composites at 1500°C under different oxygen partial pressures,” Ceram. Int., 40, 15303–15311 (2014), https://doi.org/10.1016/j.ceramint.2014.07.036.

    Article  CAS  Google Scholar 

  11. L. Silvestroni, G. Meriggi, and D. Sciti, “Oxidation behavior of ZrB2 composites doped with various transition metal silicides,” Corros. Sci., 83, 281–291 (2014), https://doi.org/10.1016/j.corsci.2014.02.026.

    Article  CAS  Google Scholar 

  12. D. Sciti, A. Balbo, and A. Bellosi, “Oxidation behavior of a pressureless sintered HfB2–MoSi2 composite,” J. Eur. Ceram. Soc., 29, 1809–1815 (2009), https://doi.org/10.1016/j.jeurceramsoc.2008.09.018.

    Article  CAS  Google Scholar 

  13. G.L. Zhunkovskii, T.M. Evtushok, O.M. Grigoriev, V.A. Kotenko, and P.V. Mazur, “Activated sintering of refractory borides,” Powder Metall. Met. Ceram., 50, No. 3–4, 212 (2011), https://doi.org/10.1007/s11106-011-9320-2.

    Article  CAS  Google Scholar 

  14. L. Kaufman, G. Cacciamani, M.L. Muolo, F. Valenza, and A. Passerone, “Wettability of HfB2 by molten Ni(B) alloys interpreted by CALPHAD methods. Part 1: Definition of the B–Hf–Ni system,” Calphad, 34, 2–5 (2010), https://doi.org/10.1016/j.calphad.2009.10.005.

    Article  CAS  Google Scholar 

  15. O.M. Grigoriev, G.L. Znunkovskii, and D.V. Vedel, “Interaction of HfB2 with nickel and Ni–20% Cr alloy (nichrome),” Powder Metall. Met. Ceram., 58, No. 11–12, 671–678 (2020), https://doi.org/10.1007/s11106-020-00104-1.

    Article  CAS  Google Scholar 

  16. G.V. Samsonov and I.M. Vinnitskii, Refractory Compounds: Handbook [in Russian], 2nd ed., Metallurgiya, Moscow (1976), p. 560.

  17. R.A. Andrievskii and I.I. Spivak, Strength of Refractory Compounds and Associated Materials [in Russian], Metallurgiya, Chelyabinsk (1989), p. 368.

  18. F. Monteverde, A. Bellosi, and L. Scatteia, “Processing and properties of ultra-high temperature ceramics for space applications,” Mater. Sci. Eng. A, 485, 415–421 (2008), https://doi.org/10.1016/j.msea.2007.08.054.

    Article  CAS  Google Scholar 

  19. D. Sciti, L. Silvestroni, and M. Nygren, “Spark plasma sintering of Zr- and Hf-borides with decreasing amounts of MoSi2 as sintering aid,” J. Eur. Ceram. Soc., 28, 1287–1296 (2008), https://doi.org/10.1016/j.jeurceramsoc.2007.09.043.

    Article  CAS  Google Scholar 

  20. E. Opila, S. Levine, and J. Lorincz, “Oxidation of ZrB2- and HfB2-based ultra-high temperature ceramics: Effect of Ta additions,” J. Mater. Sci., 39, 5969–5977 (2004), https://doi.org/10.1023/B:JMSC.0000041693.32531.d1.

    Article  CAS  Google Scholar 

  21. F. Monteverde, C. Melandri, and S. Guicciardi, “Microstructure and mechanical properties of an HfB2 + 30 vol.% SiC composite consolidated by spark plasma sintering,” Mater. Chem. Phys., 100, 513–519 (2006), https://doi.org/10.1016/j.matchemphys.2006.02.003.

    Article  CAS  Google Scholar 

  22. P.S. Sokolov, A.V. Arakcheev, I. L. Mikhal’chik, L.A. Plyasunkova, I.F. Georgiu, T.S. Frolova, R.A. Mironov, A.V. Lanin, A.O. Zabezhailov, I.Y. Kelina, and M.Y. Rusin, “Ultra-high-temperature ceramics based on HfB2–30% SiC: Production and basic properties,” Refract. Ind. Ceram., 58, 304–311 (2071), https://doi.org/10.1007/s11148-017-0101-4.

    Article  CAS  Google Scholar 

  23. F. Monteverde and A. Bellosi, “The resistance to oxidation of an HfB2–SiC composite,” J. Eur. Ceram. Soc., 25, 1025–1031 (2005), https://doi.org/10.1016/j.jeurceramsoc.2004.05.009.

    Article  CAS  Google Scholar 

  24. L. Silvestroni, N. Gilli, A. Migliori, D. Sciti, J. Watts, G.E. Hilmas, and W.G. Fahrenholtz, “A simple route to fabricate strong boride hierarchical composites for use at ultra-high temperature,” Compos. Part B Eng., 183, 1–22 (2020), https://doi.org/10.1016/j.compositesb.2019.107618.

    Article  CAS  Google Scholar 

  25. D.V. Vedel, O.N. Grigoriev, P.V. Mazur, and A.E. Osipov, “Structure, strength, and oxidation resistance of ultrahigh-temperature ZrB2–SiC–WC ceramics,” Powder Metall. Met. Ceram., 60, No. 1–2, 60–68 (2021).

    Article  CAS  Google Scholar 

  26. O.N. Grigoriev, A.V. Stepanenko, V.B. Vinokurov, I.P. Neshpor, T.V. Mosina, and L. Silvestroni, “ZrB2–SiC ceramics: Residual stresses and mechanical properties,” J. Eur. Ceram. Soc., 41, 4720–4727 (202), https://doi.org/10.1016/j.jeurceramsoc.2021.02.053.

  27. D.W. Ni, J.X. Liu, and G.J. Zhang, “Pressureless sintering of HfB2–SiC ceramics doped with WC,” J. Eur. Ceram. Soc., 32, 3627–3635 (2012), https://doi.org/10.1016/j.jeurceramsoc.2012.05.001.

    Article  CAS  Google Scholar 

  28. D.L. Hu, Q. Zheng, H. Gu, D.W. Ni, and G.J. Zhang, “Role of WC additive on reaction, solid-solution and densification in HfB2–SiC ceramics,” J. Eur. Ceram. Soc., 34, 611–619 (2014), https://doi.org/10.1016/j.jeurceramsoc.2013.10.007.

    Article  CAS  Google Scholar 

  29. F. Monteverde, “The thermal stability in air of hot-pressed diboride matrix composites for uses at ultra-high temperatures,” Corros. Sci., 47, 2020–2033 (2005), https://doi.org/10.1016/j.corsci.2004.09.019.

    Article  CAS  Google Scholar 

  30. F. Monteverde, A. Bellosi, and L. Scatteia, “Processing and properties of ultra-high temperature ceramics for space applications,” Mater. Sci. Eng. A, 485, 415–421 (2008), https://doi.org/10.1016/j.msea.2007.08.054.

    Article  CAS  Google Scholar 

  31. P. Hu and Z. Wang, “Flexural strength and fracture behavior of ZrB2–SiC ultra-high temperature ceramic composites at 1800°C,” J. Eur. Ceram. Soc., 30, 1021–1026 (2010), https://doi.org/10.1016/j.jeurceramsoc.2009.09.029.

    Article  CAS  Google Scholar 

  32. E. Zapata-Solvas, D.D. Jayaseelan, P.M. Brown, and W.E. Lee, “Effect of La2O3 addition on long-term oxidation kinetics of ZrB2–SiC and HfB2–SiC ultra-high temperature ceramics,” J. Eur. Ceram. Soc., 34, 3535–3548 (2014), https://doi.org/10.1016/j.jeurceramsoc.2014.06.004.

    Article  CAS  Google Scholar 

  33. E. Zapata-Solvas, D.D. Jayaseelan, H.T. Lin, P. Brown, and W.E. Lee, “Mechanical properties of ZrB2- and HfB2-based ultra-high temperature ceramics fabricated by spark plasma sintering,” J. Eur. Ceram. Soc., 33, 1373–1386 (2013), https://doi.org/10.1016/j.jeurceramsoc.2012.12.009.

    Article  CAS  Google Scholar 

  34. V. Guérineau, G. Vilmart, N. Dorval, and A. Julian-Jankowiak, “Comparison of ZrB2–SiC, HfB2–SiC and HfB2–SiC–Y2O3 oxidation mechanisms in air using LIF of B2O3(g),” Corros. Sci., 163, 101–110 (2020), https://doi.org/10.1016/j.corsci.2019.108278.

    Article  CAS  Google Scholar 

  35. A.Y. Potanin, A.N. Astapov, Y.S. Pogozhev, S.I. Rupasov, N.V. Shvyndina, V.V. Klechkovskaya, E.A. Levashov, I.A. Timofeev, and A.N. Timofeev, “Oxidation of HfB2–SiC ceramics under static and dynamic conditions,” J. Eur. Ceram. Soc., 41, 34–47 (2021), https://doi.org/10.1016/j.jeurceramsoc.2021.09.018.

    Article  CAS  Google Scholar 

  36. S. Ghadami, E. Taheri-Nassaj, H.R. Baharvandi, and F. Ghadami, “Effect of in situ SiC and MoSi2 phases on the oxidation behavior of HfB2-based composites,” Ceram. Int., 46, 20299–20305 (2020), https://doi.org/10.1016/j.ceramint.2020.05.116.

    Article  CAS  Google Scholar 

  37. S.J. Lee, E.S. Kang, S.S. Baek, and D.K. Kim, “Reactive hot pressing and oxidation behavior of Hf-based ultra-high-temperature ceramics,” Surf. Rev. Lett., 17, 215–221 (2010), https://doi.org/10.1142/S0218625X10013886.

    Article  CAS  Google Scholar 

  38. T.A. Parthasarathy, R.A. Rapp, M. Opeka, and R.J. Kerans, “A model for the oxidation of ZrB2, HfB2 and TiB2,” Acta Mater., 55, 5999–6010 (2007), https://doi.org/10.1016/j.actamat.2007.07.027.

    Article  CAS  Google Scholar 

  39. J. Zou, V. Rubio, and J. Binner, “Thermoablative resistance of ZrB2–SiC–WC ceramics at 2400°C,” Acta Mater., 133, 293–302 (2017), https://doi.org/10.1016/j.actamat.2017.05.033.

    Article  CAS  Google Scholar 

  40. O.N. Grigoriev, B.A. Galanov, V.A. Kotenko, S.M. Ivanov, A.V. Koroteev, and N.P. Brodnikovsky, “Mechanical properties of ZrB2–SiC (ZrSi2) ceramics,” J. Eur. Ceram. Soc., 30, 2173–2181 (2010), https://doi.org/10.1016/j.jeurceramsoc.2010.03.022.

    Article  CAS  Google Scholar 

  41. Y.F. Zheng and B. Fu, “Estimation of oxygen diffusivity from anion porosity in minerals,” Geochem. J., 32, 71–89 (1998), https://doi.org/10.2343/geochemj.32.71.

    Article  CAS  Google Scholar 

  42. N. Capron, P. Broqvist, and A. Pasquarello, “Migration of oxygen vacancy in HfO2 and across the HfO2/SiO2 interface: A first-principles investigation,” Appl. Phys. Lett., 91, 1202–1221 (2007), https://doi.org/10.1063/1.2807282.

    Article  CAS  Google Scholar 

  43. J. Yang, M. Youssef, and B. Yildiz, “Oxygen self-diffusion mechanisms in monoclinic ZrO2 revealed and quantified by density functional theory, random walk analysis, and kinetic Monte Carlo calculations,” Phys. Rev. B, 97, 1–7 (2018), https://doi.org/10.1103/PhysRevB.97.024114.

    Article  Google Scholar 

  44. A. Navrotsky and S.V. Ushakov, “Thermodynamics of oxide systems relevant to alternative gate dielectrics,” Mater. Fundam. Gate Dielectr., 32, 57–108 (2006), https://doi.org/10.1007/1-4020-3078-9_3.

    Article  Google Scholar 

  45. B.D. Vasyliv, V.Ya. Podhurs’ka, O.P. Ostash, O.D. Vasyl’ev, and E.M. Brodnikovs’kyi, “Influence of reducing and oxidizing media on the physicomechanical properties of ScCeSZ–NiO and YSZ–NiO ceramics,” Mater. Sci., 49, 135–144 (2013), https://doi.org/10.1007/s11003-013-9593-3.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D.V. Vedel.

Additional information

Translated from Poroshkova Metallurgiya, Vol. 60, Nos. 11–12 (542), pp. 41–55, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vedel, D., Grigoriev, O., Mazur, P. et al. Ultrahigh-Temperature HfB2-Based Ceramics: Structure, High-Temperature Strength, and Oxidation Resistance. Powder Metall Met Ceram 60, 685–697 (2022). https://doi.org/10.1007/s11106-022-00280-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-022-00280-2

Keywords

Navigation