Skip to main content

Thermodynamics of Oxide Systems Relevant to Alternative Gate Dielectrics

  • Chapter
Materials Fundamentals of Gate Dielectrics

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.J. Hubbard, D.G. Schlom, Thermodynamic stability of binary oxides in contact with silicon, J. Mater. Res. 11(11), 2757–2776 (1996).

    ADS  Google Scholar 

  2. D.G. Schlom, J.H. Haeni, A thermodynamic approach to selecting alternative gate dielectrics, MRS Bull. 27(3), 198–204 (2002).

    Google Scholar 

  3. S. Stemmer, Z.Q. Chen, P.S. Lysaght, J.A. Gisby, J.R. Taylor, Investigations of the structure and stability of alternative gate dielectrics, Proc. Electrochem. Soc. 2003–2 (Silicon Nitride and Silicon Dioxide Thin Insulating Films) (2003) 119–130.

    Google Scholar 

  4. L. Topor, O.J. Kleppa, Standard enthalpies of formation of silicides M5Si3 (M = yttrium lutetium zirconium) and of hafnium silicide (Hf3Si2), J. Less-Common Metals 167(1), 91–99 (1990).

    Article  Google Scholar 

  5. S.V. Meschel, O.J. Kleppa, Standard enthalpies of formation of some 5d transition metal silicides by high temperature direct synthesis calorimetry, J. Alloys Comp. 280(1–2), 231–239 (1998).

    Article  Google Scholar 

  6. S.V. Meschel, O.J. Kleppa, Standard enthalpies of formation of some 4d transition metal silicides by high temperature direct synthesis calorimetry, J. Alloys Comp. 274(1–2), 193–200 (1998).

    Article  Google Scholar 

  7. M.C. Wilding, A. Navrotsky, High temperature calorimetric studies of the heat of solution of La2O3 in silicate liquids, J. Non-Cryst. Solids 265(3), 238–251 (2000).

    Article  ADS  Google Scholar 

  8. I.C. Lin, A. Navrotsky, J.K.R. Weber, P.C. Nordine, Thermodynamics of glass formation and metastable solidification of molten Y3Al5O12, J. Non-Cryst. Solids 243(23), 273–276 (1999).

    Article  ADS  Google Scholar 

  9. H. Zhang, B. Gilbert, F. Huang, J.F. Banfield, Water-driven structure transformation in nanoparticles at room temperature, Nature 424(6952), 1025–1029 (2003).

    Article  ADS  Google Scholar 

  10. Y. Zhang, PhD dissertation, UC Davis (2003).

    Google Scholar 

  11. J.A. Tangeman, Private communication (2004).

    Google Scholar 

  12. Y. Zhang, A. Navrotsky, Thermochemistry of glasses in the Y2O3-Al2O3-SiO2 system, J. Am. Cer. Soc. 86(10), 1727–1732 (2003).

    Article  Google Scholar 

  13. Y. Zhang, A. Navrotsky, J.A. Tangeman, J.K.R. Weber, Thermochemistry of glasses along the 2NdAlO3-3SiO2 join, J. Phys.: Condens. Matter 15(31), S2343–S2355 (2003).

    Article  ADS  Google Scholar 

  14. J.K.R. Weber, J.A. Tangeman, T.S. Key, P.C. Nordine, Investigation of liquid-liquid phase transitions in molten aluminates under containerless conditions, J. Thermophys. Heat Transfer 17(2), 182–185 (2003).

    Article  Google Scholar 

  15. S. Ellsworth, A. Navrotsky, R.C. Ewing, Energetics of radiation damage in natural zircon (ZrSiO4), Phys. Chem. Minerals 21(3), 140–149 (1994).

    Article  ADS  Google Scholar 

  16. L.M. Wang, S.X. Wang, W.L. Gong, R.C. Ewing, W.J. Weber, Amorphization of ceramic materials by ion beam irradiation, Mater. Sci. Eng. A 253, 106–113 (1998).

    Article  Google Scholar 

  17. J. Lian, L.M. Wang, J. Chen, R.C. Ewing, K.V.G. Kutty, Heavy ion irradiation of zirconate pyrochlores, Mater. Res. Soc. Symp. Proc. 713 (Scientific Basis for Nuclear Waste Management XXV), 507–512 (2002).

    Google Scholar 

  18. J. Lian, X.T. Zu, K.V.G. Kutty, J. Chen, L.M. Wang, R.C. Ewing, Ion-irradiation-induced amorphization of La2Zr2O7 pyrochlore, Phys. Rev. B 66(5), 054108/1–5 (2002).

    Article  ADS  Google Scholar 

  19. D. Turnbull, Modes of formation of amorphous solids: an overview, Diffusion and Defect Data 53(4), 9–20 (1987).

    Google Scholar 

  20. MacK.J.D. Kenzie, T. Kemmitt, Evolution of crystalline aluminates from hybrid gelderived precursors studied by XRD and multinuclear solid-state MAS NMR. II. Yttrium-aluminum garnet Y3Al5O12, Thermochim. Acta 325(1), 13–18 (1999).

    Article  Google Scholar 

  21. MacK.J.D. Kenzie, M. Schmucker, L. Mayer, Evolution of crystalline aluminates from hybrid gel-derived precursors studied by XRD and multinuclear solid state MAS NMR. III. Lanthanum hexaluminate LaAl11O18, Thermochim. Acta 335(1–2), 73–78 (1999).

    Article  Google Scholar 

  22. G. Stefanic, S. Music, Factors influencing the stability of low temperature tetragonal ZrO2, Croatica Chem. Acta 75(3), 727–767 (2002).

    Google Scholar 

  23. S.V. Ushakov, B.E. Burakov, V.M. Garbuzov, E.B. Anderson, E.E. Strykanova, M.M. Yagovkina, K.B. Helean, Y.X. Guo, R.C. Ewing, W. Lutze, Synthesis of Ce-doped zircon by a sol-gel process, Mater. Res. Soc. Symp. Proc. 506, 281–288 (1998).

    Google Scholar 

  24. S.V. Ushakov, C.E. Brown, A. Navrotsky, A. Demkov, C. Wang, B.-Y. Nguyen, Thermal analyses of bulk amorphous oxides and silicates of zirconium and hafnium, Mater. Res. Soc. Symp. Proc. 745 (Novel Materials and Processes for Advanced CMOS), 3–8 (2003).

    Google Scholar 

  25. M. Mizuno, R. Berjoan, J.P. Coutures, M. Foex, Phase diagram of the system aluminum oxide-lanthanum oxide at elevated temperatures, Yogyo Kyokaishi 82(12), 631–636 (1974). (PDFC 6438).

    Google Scholar 

  26. N.A. Toropov, I.A. Bondar, F.Ya. Galakhov, Kh.S. Nikogosyan, N.V. Vinogradova, Phase equilibriums in the yttrium oxide-alumina system, Izv. Akad. Nauk SSSR, Seriya Khimicheskaya 7(7), 1158–1164 (1964) (PDFC 2344).

    Google Scholar 

  27. T. Noguchi, M. Mizuno, Liquidus curve measurements in the system yttrium oxide-aluminum oxide, Kogyo Kagaku Zasshi 70(6), 834–839 (1967) (PDFC 4370).

    Google Scholar 

  28. J.M. McHale, K. Yuerekli, D.M. Dabbs, A. Navrotsky, S. Sundaresan, I.A. Aksay, Metastability of spinel-type solid solutions in the SiO2-Al2O3 system, Chem. Mater. 9(12), 3096–3100 (1997).

    Article  Google Scholar 

  29. J.M. McHale, A. Aurooux, A.J. Perrotta, A. Navrotsky, Surface energies and thermodynamic phase stability in nanocrystalline aluminas, Science 277, 788–791 (1997).

    Article  Google Scholar 

  30. J.M. McHale, A. Navrotsky, A.J. Perrotta, Effects of increased surface area and chemisorbed H2O on the relative stability of nanocrystalline γ-Al2O3 and α-Al2O3, J. Phys. Chem. B 101(4), 603–613 (1997).

    Article  Google Scholar 

  31. A. Navrotsky, Systematic trends and prediction of enthalpies of formation of refractory lanthanide and actinide ternary oxide phases, Ceram. Trans. 119, 137–146 (2001).

    Google Scholar 

  32. A. Navrotsky, Thermochemical studies of nitrides and oxynitrides by oxidative oxide melt calorimetry, J. Alloys Comp. 321(2), 300–306 (2001).

    Article  Google Scholar 

  33. A. Navrotsky, Thermochemistry of nanomaterials, Rev. Miner. Geochem. 44, 73–103 (2001).

    Article  Google Scholar 

  34. M.R. Ranade, S.H. Elder, A. Navrotsky, Energetics of nanoarchitectured TiO2-ZrO2 and TiO2-MoO3 composite materials, Chem. Mater. 14(3), 1107–1114 (2002).

    Article  Google Scholar 

  35. M.R. Ranade, A. Navrotsky, H.Z. Zhang, J.F. Banfield, S.H. Elder, A. Zaban, P.H. Borse, S.K. Kulkarni, G.S. Doran, H.J. Whitfield, Energetics of nanocrystalline TiO2, Proc. Natl. Acad. Sci. 99(suppl.2), 6476–6481 (2002).

    Article  ADS  Google Scholar 

  36. M.W. Pitcher, S.V. Ushakov, A. Navrotsky, B.F. Woodfield, G. Li, J. Boerio-Goates, B.M. Tissue, Energy crossovers in nanocrystalline zirconia, J. Am. Cer. Soc. 88(1), 160–167 (2005).

    Article  Google Scholar 

  37. R.K. Iler, The Chemistry of Silica (John Wiley & Sons Inc., 1979), pp. 623–792.

    Google Scholar 

  38. A. Navrotsky, R.P. Rapp, E. Smelik, P. Burnley, S. Circone, L. Chai, K. Bose, H.R. Westrich, The behavior of H2O and CO2 in high-temperature lead borate solution calorimetry of volatile-bearing phases, Am. Mineral. 79(11–12), 1099–1109 (1994).

    Google Scholar 

  39. A. Navrotsky, Thermochemistry of crystalline and amorphous silica, Rev. Mineral. 29 (SILICA), 309–329 (1994).

    Google Scholar 

  40. R.H.J. Hannink, P.M. Kelly, B.C. Muddle, Transformation toughening in zirconia-containing ceramics, J. Am. Ceram. Soc. 83(3), 461–487 (2000).

    Article  Google Scholar 

  41. M.H. Bocanegra-Bernal, S.D. de la Torre, Phase transitions in zirconium dioxide and related materials for high performance engineering ceramics, J. Mater. Sci. 37(23), 4947–4971 (2002).

    Article  Google Scholar 

  42. A. Suresh, M.J. Mayo, W.D. Porter, Thermodynamics of the tetragonal-to-monoclinic phase transformation in fine and nanocrystalline yttria-stabilized zirconia powders, J. Mater. Res. 18(12), 2912–2921 (2003).

    ADS  Google Scholar 

  43. O.M. Stansfield, Thermal expansion of polycrystalline HfO2-ZrO2 solid solutions, J. Am. Ceram. Soc. 48(8), 436–437 (1965).

    Google Scholar 

  44. R. Ruh, H.J. Garret, R.F. Domagala, N.M. Tallen, System zirconia-hafnia, J. Am. Ceram. Soc. 51(1), 23–27 (1968).

    Google Scholar 

  45. A.M. Gavrish, B.Ya. Sukharevskii, P.P. Krivoruchko, E.I. Zoz, Solid solutions and polymorphism in the zirconium dioxide-hafnium dioxide system, Izv. Akad. Nauk SSSR Neorg. Mater. 5(3), 547–550 (1969).

    Google Scholar 

  46. J. Wang, H.P. Li, R. Stevens, Hafnia and hafnia-toughened ceramics, J. Mater. Sci. 27(20), 5397–5430 (1992).

    Article  ADS  Google Scholar 

  47. Powder Diffraction File (PDF): Inorganic Phases, JCPDS-ICDD (1999).

    Google Scholar 

  48. Inorganic Crystal Structure Database (ICSD), The National Institute of Standards and Technology (NIST) and Fachinformationszentrum Karlsruhe (FIZ) (2004).

    Google Scholar 

  49. H.J. Garrett, Am. Ceram. Soc. Bull. 42, 201 (1963).

    Google Scholar 

  50. E.I. Zoz, A.M. Gavrish, N.V. Gul’ko, Phase formation in the zirconium oxide (hafnium oxide)-lanthanum oxide system, Izv. Akad. Nauk SSSR Neorg. Mater. 14(1), 109–111 (1978).

    Google Scholar 

  51. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A32, 751–767 (1976).

    ADS  Google Scholar 

  52. O. Ruff, F. Ebert, Refractory ceramics. I. The forms of zirconium dioxide, Z. Anorg. Allgem. Chem. 180, 19–41 (1929).

    Article  Google Scholar 

  53. R.C. Garvie, Stabilization of the tetragonal structure in zirconia microcrystals, J. Phys. Chem. 82(2), 218–224 (1978).

    Article  Google Scholar 

  54. R.C. Garvie, The occurrence of metastable tetragonal zirconia as a crystallite size effect, J. Phys. Chem. 69(4), 1238–1243 (1965).

    Google Scholar 

  55. O. Hunter, R.W. Scheidecker Jr., S. Tojo, Characterization of metastable tetragonal hafnia, Ceram. Int. 5(4), 137–141 (1979).

    Article  Google Scholar 

  56. S.K. Filatov, High-Temperature Crystallochemistry (Leningrad, Nedra, 1990), p. 284.

    Google Scholar 

  57. C. Zhao, V. Cosnier, P.J. Chen, O. Richard, G. Roebben, J. Maes, S. Van Elshocht, H. Bender, E. Young, O. Van Der Biest, M. Caymax, W. Vandervorst, S. De Gendt, M. Heyns, Thermal stability of high k layers, Mater. Res. Soc. Symp. Proc. 745 (Novel Materials and Processes for Advanced CMOS), 9–14 (2003).

    Google Scholar 

  58. S.V. Ushakov, C.E. Brown, A. Navrotsky, Effect of La and Y on crystallization temperatures of hafnia and zirconia, J. Mater. Res. 19(3), 693–696 (2004).

    Article  ADS  Google Scholar 

  59. V.B. Glushkova, E.K. Koehler, L.G. Shcherbakova, Kinetics and mechanism of solid state reactions in systems of refractory oxides, in: Science of Ceramics, Vol. 5, Brit. Ceram. Soc. 219–239 (1970).

    Google Scholar 

  60. E. Gusev, C. Cabral, M. Copel Jr., C.D. Emic, M. Gribelyuk, Ultrathin HfO2 films growth on silicon by atomic layer deposition for advanced gate dielectrics applications, Microelectron. Eng. 69, 145–151 (2003).

    Article  Google Scholar 

  61. R.R. Manory, T. Mori, I. Shimizu, S. Miyake, G. Kimmel, Growth and structure control of HfO2−x films with cubic and tetragonal structures obtained by ion beam assisted deposition, J. Vac. Sci. Technol. A 20(2), 549–554 (2002).

    Article  ADS  Google Scholar 

  62. J.P. Holgado, F. Espinos, A. Yebero, M. Justo, J. Ocana, A.R. Benitez, Gonzales-Eipe stabilization of the cubic/tetragonal phases of ZrO2 in thin films prepared by ion beam induced chemical vapour deposition, Thin Solid Films 389, 34–42 (2001).

    Article  ADS  Google Scholar 

  63. S.S. Tsunekawa, Y. Ito, J.-T. Kawazoe, Wang Critical size of the phase transition from cubic to tetragonal in pure zirconia nanoparticles, Nano Lett. 3(7), 871–875 (2003).

    Article  ADS  Google Scholar 

  64. O. Ohtaka, H. Fukui, T. Kunisada, T. Fujisawa, Phase relations and volume changes of hafnia under high pressure and high temperature, J. Am. Ceram. Soc. 84, 1369–1373 (6) (2001).

    Article  Google Scholar 

  65. O. Ohtaka, T. Yamanaka, S. Kume, E. Ito, A. Navrotsky, Stability of monoclinic and orthorhombic zirconia: studies by high-pressure phase equilibria and calorimetry, J. Am. Ceram. Soc. 74, 505–509 (1991).

    Article  Google Scholar 

  66. S.W. Nam, S. Yoo, H. Nam, D. Choi, D. Lee, J.H. Ko, J.H. Moon, S. Ku Choi, Influence of annealing conditions on the properties of sputtered hafnium oxide, J. Non-Cryst. Solids 303(1), 139–149 (2002).

    Article  ADS  Google Scholar 

  67. K. Kukli, M. Ritala, T. Sajavaara, J. Keinonen, M. Leskela, Atomic layer deposition of hafnium dioxide films from hafnium tetrakis (ethylamide) and water, Chem. Vap. Deposition 8, 5 (2002).

    Article  Google Scholar 

  68. C. Wiemer, M. Fanciulli, B. Crivelli, G. Pavia, M. Alessandri, Evolution of crystallographic ordering in Hf1−x AlxOy high-k dielectric deposited by atomic layer deposition, Appl. Phys. Lett. 83(25), 5271–5273 (2003).

    Article  ADS  Google Scholar 

  69. S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc. 60, 309–319 (1938).

    Article  ADS  Google Scholar 

  70. R.G. Haire, L. Eyring, Comparisons of the binary oxides, in: Handbook on the Physics and Chemistry of Rare Earths, Vol. 18, eds. K.A. Gschneidner Jr. L.G.R. Eyring, G.H. Choppin, Lander (North-Holland, Amsterdam, 1994), pp. 413–506.

    Google Scholar 

  71. V.B. Glushkova, E.K. Keler, Polymorphism of La oxide, Doklady Akad. Nauk SSSR 152(3), 611–614 (1963).

    Google Scholar 

  72. I. Warshaw, R. Roy, Crystal chemistry of rare earth sesquioxides aluminates and silicates, in: Progr. Sci. Technol. Rare Earths, Vol. 1, ed. L.A. Eyring (Pergamon Press Book, The Macmilan Company, New York, 1964), pp. 203–221.

    Google Scholar 

  73. I. Warshaw, R. Roy, Polymorphism of the rare earth sesquioxides, J. Phys. Chem. 65, 2048–2051 (1961).

    Google Scholar 

  74. V.M. Goldschmidt, F. Ulrich, T. Barth, Geochemische Verteilungsgesetze der Elemente. IV. Skrifter NorskeVidenskaps-Akad. Oslo. I Mater. Naturv. Kl. 5, 6–24 (1925).

    Google Scholar 

  75. M. Foex, J.P. Traverse, Polymorphism of rare earth sesquioxides at high temperatures, Bull. Soc. Franc. Mineral. Crist. 89(2), 184–205 (1966).

    Google Scholar 

  76. P. Aldebert, J.P. Traverse, Neutron diffraction study of the high temperature structures of lanthanum oxide and neodymium oxide, Mater. Res. Bull. 14(3), 303–323 (1979). (ICSD #100213).

    Article  Google Scholar 

  77. M. Foex, J.P. Traverse, Investigations about crystalline transformation in rare earths sesquioxides at high temperatures, Rev. Int. Hautes Temp. Refract. 3(4), 429–453 (1966). (H-Y 2 O 3, PDF 201412, 2300 C).

    Google Scholar 

  78. V. Swamy, H.J. Seifert, F. Aldinger, Thermodynamic properties of Y2O3 phases and the yttrium-oxygen phase diagram, J. Alloys Comp. 269(1–2), 201–207 (1998).

    Article  Google Scholar 

  79. V. Swamy, N.A. Dubrovinskaya, L.S. Dubrovinsky, High-temperature powder x-ray diffraction of yttria to melting point, J. Mater. Res. 14(2), 456–459 (1999).

    ADS  Google Scholar 

  80. A. Navrotsky, in preparation.

    Google Scholar 

  81. W. Chen, T.A. Lee, A. Navrotsky, Enthalpy of formation of yttria-doped ceria, J. Mat. Res., 20(1), 144–150 (2005).

    Article  ADS  Google Scholar 

  82. S.V. Ushakov, J. Cheng, A. Navrotsky, J.R. Wu, S.M. Haile, Formation enthalpies of tetravalent lanthanide perovskites by high temperature oxide melt solution calorimetry, Mater. Res. Soc. Symp. Proc. 718 (Perovskite Materials), 71–76 (2002).

    Google Scholar 

  83. L.R. Morss, Comparative thermochemical and oxidation-reduction properties of lanthanides and actinides, in: Handbook on the Physics and Chemistry of Rare Earths, Vol. 18, eds. K.A. Gschneidner Jr., G.R. Eyring, G.H. Choppin and Lander (North-Holland, Amsterdam, 1994), p. 239.

    Google Scholar 

  84. H. Eilers, B.M. Tissue, Synthesis of nanophase ZnO Eu2O3 and ZrO2 by gas-phase condensation with cw-CO2 laser heating, Mater. Lett. 24(4), 261–265 (1995).

    Article  Google Scholar 

  85. B.M. Tissue, H.B. Yuan, Structure particle size and annealing of gas phase-condensed Eu3+:Y2O3 nanophosphors, J. Solid State Chem. 171(1–2), 12–18 (2003).

    Article  ADS  Google Scholar 

  86. S. Katagiri, N. Ishizawa, F. Marumo, A new high temperature modification of face-centered cubic yttrium oxide (Y2O3), Powder Diffraction 8(1), 60 (1993).

    ADS  Google Scholar 

  87. R.J. Gaboriaud, F. Paumier, F. Pailloux, P. Guerin, Y2O3 thin films: internal stress and microstructure, Mater. Sci. Eng. B 109(1–3), 34–38 (2004).

    Google Scholar 

  88. L.M. Lopato, A.V. Shevchenko, G.I. Gerasimyuk, Hafnium oxide-aluminum oxide system, Izv. Akad. Nauk SSSR Neorg. Mater. 12(9), 1623–1626 (1976); Inorg. Mater. (Eng. Transl.) 12(9), 1331–1334 (PDFC fig 6441).

    Google Scholar 

  89. S. Komarneni, R. Roy, Synthesis of zircon, in: Zircon Science and Technology, ed. S. Somiya (Uchidarikakuho, Japan, 1988), pp. 289–298.

    Google Scholar 

  90. A.I. Kingon, J.-P. Maria, S.K. Streiffer, Alternative dielectrics to silicon dioxide for memory and logic devices, Nature 406, 1032–1038 (2000).

    Article  Google Scholar 

  91. J.-P. Maria, D. Wickaksana, J. Parrette, A.I. Kingon, Crystallization in SiO2-metal oxide alloys, J. Mater. Res. 17(7), 1571–1579 (2002).

    ADS  Google Scholar 

  92. W.F.A. Besling, E. Young, T. Conard, C. Zhao, R. Carter, W. Vandervorst, M. Caymax, S. De Gendt, M. Heyns, J. Maes, M. Tuominen, S. Haukka, Characterization of ALCVD Al2O3-ZrO2 nanolaminates, link between electrical and structural properties, J. Non-Cryst. Solids 303(1), 123–133 (2002).

    Article  ADS  Google Scholar 

  93. A.G. Karaulov, E.I. Zoz, Study of zirconia-hafnia-silica-system solid solutions and preparation of new refractory materials from them, Ogneupory 2(2), 11–13 (1991).

    Google Scholar 

  94. S.V. Ushakov, K.B. Helean, A. Navrotsky, L.A. Boatner, Thermochemistry of rare-earth orthophosphates, J. Mater. Res. 16(9), 2623–2633 (2001).

    ADS  Google Scholar 

  95. Y. Kanno, Thermodynamic and crystallographic discussion of the formation and dissociation of zircon, J. Mater. Sci. 24, 2415–2420 (1989).

    Article  ADS  Google Scholar 

  96. A.J.G. Ellison, A. Navrotsky, Enthalpy of formation of zircon, J. Am. Ceram. Soc. 75(6), 1430–1433 (1992).

    Article  Google Scholar 

  97. S.V. Ushakov, W. Gong, M.M. Yagovkina, K.B. Helean, W. Lutze, R. Ewing, Solid solutions of Ce U and Th in zircon, Ceram. Trans. 93, 357–363 (1999).

    Google Scholar 

  98. G.D. Wilk, R.M. Wallace, J.M. Anthony, High-k gate dielectrics: Current status and materials properties considerations, J. Appl. Phys. 89(10), 5243–5275 (2001).

    Article  ADS  Google Scholar 

  99. G.D. Wilk, R.M. Wallace, Stable zirconium silicate gate dielectrics deposited directly on silicon, Appl. Phys. Lett. 76(1), 112–114 (2000).

    Article  ADS  Google Scholar 

  100. T.P. Ledneva, K.A. Bryukhova, Solubility of the refractory oxides zirconium dioxide and hafnium dioxide in silica, Steklo 2, 84–87 (1973).

    Google Scholar 

  101. P. Lysaght, B. Forran, S. Stemmer, G. Bersuker, J. Bennett, R. Tichy, L. Larson, H.R. Huff, Thermal response of MOCVD hafnium silicate, Microelectron. Eng. 69(2–4), 182–189 (2003).

    Article  Google Scholar 

  102. S.V. Ushakov, A. Navrotsky, Y. Yang, S. Stemmer, K. Kukli, M. Ritala, M.A. Leskelä, P. Fejes, A. Demkov, C. Wang, B.-Y. Nguyen, D. Triyoso, P. Tobin, Crystallization in hafnia-and zirconia-based systems, Phys. Stat. Sol. (b), 241(10), 2268–78 (2004).

    Article  ADS  Google Scholar 

  103. C.G. Levi, Metastability and microstructure evolution in the synthesis of inorganics from precursors, Acta Mater. 463, 787–800 (1998).

    Article  ADS  Google Scholar 

  104. N.A. Toropov, I.A. Bondar, F.J. Galakhov, High-temperature solid solutions of silicates of the rare earth elements, Trans. Intern. Ceram. Congr. 8th Copenhagen 85–103 (1962).

    Google Scholar 

  105. N.A. Toropov, I.A. Bondar, Silicates of the rare earth elements. III. Phase diagram for the binary system yttrium oxide-silica, Izv. Akad. Nauk SSSR Seriya Khimicheskaya 544–550 (1961).

    Google Scholar 

  106. O. Fabrichnaya, H.J. Seifert, R.L.T. Weiland, F. Aldinger, A. Navrotsky, Phase equilibria and thermodynamics in the Y2O3-Al2O3-SiO2 system, Zeitschrift fuer Metallkunde 92(9), 1083–1097 (2001).

    Google Scholar 

  107. A.N. Christensen, R.G. Hazell, A.W. Hewat, Synthesis crystal growth and structure investigations of rare-earth disilicates and rare-earth oxyapatites, Acta Chem. Scand. 51(1), 37–43 (1997).

    Article  Google Scholar 

  108. A.N. Christensen, Investigation by the use of profile refinement of neutron powder diffraction data of the geometry of the [Si2O7]6− ions in the high temperature phases of rare earth disilicates prepared from the melt in crucible-free synthesis, Zeitschrift fuer Kristallographie 209(1), 7–13 (1994).

    Article  MathSciNet  Google Scholar 

  109. A.N. Christensen, A.F. Jensen, B.K. Themsen, R.G. Hazell, M. Hanfland, E. Dooryhee, Structure investigations of the high-temperature phases of La2Si2O7, Gd2Si2O7 and Sm2Si2O7, Acta Chem. Scand. 51(12), 1178–1185 (1997).

    Google Scholar 

  110. A.S. Risbud, K.B. Helean, M.C. Wilding, P. Lu, A. Navrotsky, Enthalpies of formation of lanthanide oxyapatite phases, J. Mater. Res. 16(10), 2780–2783 (2001).

    ADS  Google Scholar 

  111. K.P. Plucknett, D.S. Wilkinson, Microstructural characterization of a microwave-sintered silicon nitride based ceramic, J. Mater. Res. 10(6), 1387–1396 (1995).

    ADS  Google Scholar 

  112. J. Lin, Q. Su, Luminescence and energy migration in the oxyapatite Ca2Gd8(SiO4)6O2 doped with several rare earth and mercury-like ions, J. Alloys Comp. 210(1–2), 159–163 (1994).

    Article  Google Scholar 

  113. C.R. Ronda, T. Jüstel, H. Nikol, Rare earth phosphors: fundamentals and applications, J. Alloys Comp. 275–277, 669–676 (1998).

    Article  Google Scholar 

  114. L.M. Wang, M. Cameron, W.J. Weber, K.D. Crowley, R.C. Ewing, In situ TEM observation of radiation induced amorphization of crystals with apatite structure, in: Hydroxyapatite of Related Materials, eds. P.W. Brown, B. Constantz (CRC, Boca Raton, 1994), pp. 243–249.

    Google Scholar 

  115. J.-J. Liang, A. Navrotsky, T. Ludwig, H.J. Seifert, F. Aldinger, Enthalpy of formation of rare earth silicatesY2SiO5 and Yb2SiO5 and N-containing silicateY10(SiO4)6N2, J. Mater. Res. 14, 1181–1185 (1999).

    ADS  Google Scholar 

  116. Y. Kanke, A. Navrotsky, A calorimetric study of the lanthanide aluminum oxides and the lanthanide gallium oxides: stability of the perovskites and the garnets, J. Solid State Chem. 141(2), 424–436 (1998).

    Article  ADS  Google Scholar 

  117. M.C. Wilding, P.F. McMillan, A. Navrotsky, Calorimetric study of glasses and liquids in the polyamorphic system, Y2O3-Al2O3. Phys. Chem. Glasses 43(6), 306–312 (2002).

    Google Scholar 

  118. M.C. Wilding, P.F. McMillan, Liquid polymorphism in yttrium-aluminate liquids in: New Kinds of Phase Transitions: Transformations in Disordered Substances, ed. V.V. Brazhkin (2002), pp. 57–73.

    Google Scholar 

  119. M.C. Wilding, P.F. McMillan, A. Navrotsky, Thermodynamic and structural aspects of the polyamorphic transition in yttrium and other rare-earth aluminate liquids, in: Physica A: Statistical Mechanics and Its Applications (Amsterdam, Netherlands) 314(1–4), 379–390 (2002).

    Article  ADS  Google Scholar 

  120. M.C. Wilding, Private communication (2003).

    Google Scholar 

  121. A. Rouanet, Zirconium dioxide-lanthanide oxide systems close to the melting point, Rev. Int. Hautes Temp. Refract. 8(2), 161–180 (1971) (PDFC 5232).

    Google Scholar 

  122. V.B. Glushkova, E.K. Keler, M. Kravchinskaya, V.V.A. Krzhizhanovskaya, A.K. Kuznetsov, P.A. Tikhonov, Zirconates of rare earth elements, in: Rare Earth Element Compounds: Zirconates Hafnates Niobates Tantalates and Antimonates (Soedineniya Redkozemel’nykh Elementov: Tsirkonaty Gafnaty Niobaty Tantalaty Antimonaty), eds. V.P. Orlovskii and N.N. Chudinova (Nauka, Moscow, USSR, 1985), pp. 3–40.

    Google Scholar 

  123. V.B. Glushkova, M.V. Kravchinskaya, Hafnium dioxide-based refractory compounds and solid solutions. I. Phase diagrams of the systems HfO2-M2O3 and HfO2-MO, Ceram. Int. 11(2), 56–65 (1985).

    Article  Google Scholar 

  124. V.B. Glushkova, M.V. Kravchinskaya, A.K. Kuznetsov, P.A. Tikhonov, Hafnates of rare earth elements, in: Rare Earth Element Compounds: Zirconates Hafnates Niobates Tantalates and Antimonates (Soedineniya Redkozemel’nykh Elementov: Tsirkonaty Gafnaty Niobaty Tantalaty Antimonaty), eds. V.P. Orlovskii and N.N. Chudinova (Nauka, Moscow, USSR, 1985), pp. 42–77.

    Google Scholar 

  125. V.B. Glushkova, V.A. Krzhizhanovskaya, Hafnium dioxide-based refractory compounds and solid solutions. 2. Kinetics and mechanism of compound formation in the systems HfO2-M2O3(MO), Ceram. Int. 11(3), 80–90 (1985).

    Article  Google Scholar 

  126. V.V. Kharton, A.A. Yarmchenko, E.N. Naumovich, F.M.B. Marques, Research on the electrochemistry of oxygen ion conductors in the former Soviet Union. III. HfO2-, CeO2-and ThO2-based oxides, J. Solid State Electrochem. 4, 243–266 (2000).

    Article  Google Scholar 

  127. T.A. Lee, A. Navrotsky, Enthalpy of formation of cubic yttria-stabilized hafnia (c-YSH), J. Mater. Res. 19(6), 1855–1861 (2004).

    Article  ADS  Google Scholar 

  128. T.A. Lee, A. Navrotsky, I. Molodetsky, Enthalpy of formation of cubic yttria-stabilized zirconia, J. Mater. Res. 18(4), 908–918 (2003).

    ADS  Google Scholar 

  129. M.A. Subramanian, A.W. Sleight, Rare earth pyrochlores, in: Handbook on the Physics and Chemistry of Rare Earths, Vol. 16, eds. K.A. Gschneidner Jr., L. Eyring (Elseiver Science Publishers, North-Holland, Amsterdam, 1993), pp. 225–248.

    Google Scholar 

  130. S.V. Ushakov, A. Navrotsky, L.A. Boatner, in preparation

    Google Scholar 

  131. J.W. Seo, J. Fompeyrine, A. Guiller, G. Norga, C. Marchiori, H. Siegwart, J.-P. Locquet, Interface formation and defect structures in epitaxial La2Zr2O7 thin films on (111) Si, Appl. Phys. Lett. 83(25), 5211–5213 (2003).

    Article  ADS  Google Scholar 

  132. A. Dimoulas, G. Vellianitis, G. Apostolopoulos, G. Mavrou, A. Travlos, J.C. Hooker, Z.M. Rittersma, Epitaxial and amorphous La2Hf2O7 on silicon for high-k gates, Abstracts Mater. Res. Soc. 2003 Fall Meeting 146 (2003).

    Google Scholar 

  133. N.K. Adam, The Physics and Chemistry of Surfaces (Clarendon Press, Oxford, 1938).

    Google Scholar 

  134. A.W. Adamson, A.P. Gast, Physical Chemistry of Surfaces (John Wiley and Sons, New York, 1997).

    Google Scholar 

  135. A.W. Adamson, Physical Chemistry of Surfaces (JohnWiley and Sons, New York, 1976).

    Google Scholar 

  136. R.J. Good, Surface free energy of solids and liquids: thermodynamics molecular forces and structure, J. Colloid Interface Sci. 59, 3 (1977).

    Article  Google Scholar 

  137. M.J. Jaycock, G.D. Parfitt, Chemistry of Interfaces (John Wiley and Sons, New York, 1981), p. 279.

    Google Scholar 

  138. J.N. Israelachvili, Intermolecular and Surface Forces. With Applications to Colloidal and Biological Systems (Academic Press, New York, 1985), p. 296.

    Google Scholar 

  139. K.N. Tu, J.W. Mayer, L.C. Feldman, Electronic thin Film Science: For Electrical Engineers and Materials Scientists (Macmillan Publishing Company, New York, 1992), p. 428.

    Google Scholar 

  140. E.D. Shchukin, A.V. Pertsov, E.A. Amelina, A.S. Zelenov, Colloid and Surface Chemistry (Elsevier, Amsterdam, 2001), pp. 57–58.

    Google Scholar 

  141. E. Orowan, Surface energy and surface tension in solids and liquids, Proc. Roy. Soc. Lond. 316, 473–491 (1970).

    Article  ADS  Google Scholar 

  142. E.M. McCash, Surface Chemistry (University Press, Oxford, 2001), p. 177.

    Google Scholar 

  143. F. Beschstedt, Principles of Surface Physics. Advanced Texts in Physics (Springer-Verlag, Berlin, Heidelberg, New York, 2003), p. 342.

    Google Scholar 

  144. R.S. Burdon, Surface Tension and the Spreading of Liquids (Cambridge University Press, Cambridge, 1940).

    MATH  Google Scholar 

  145. D. Gupta, Diffusion solute segregations and interfacial energies in some material: An overview, Interface Sci. 11(1), 7–20 (2003).

    Article  MATH  Google Scholar 

  146. P.P. Pugachevich, V.I. Yashkichev, Measurement of surface tension of liquid metals at high temperatures, in: The Role of Surface Phenomena in Metallurgy, ed. V.N. Eremenko (Constants Bureau, New York, 1963), p. 46.

    Google Scholar 

  147. A.C. Lewis, A.B. Mann, D. Van Heerden, D. Josell, T.P. Weihs, The effect of interfacial free energies on the stability of microlaminates, Mater. Res. Soc. Symp. Proc. 652 (Influences of Interface and Dislocation Behavior on Microstructive Evolution) Y1.3.1–6 (2001).

    Google Scholar 

  148. J.W. Obreimoff, The splitting strength of mica, Proc. Roy. Soc. Lond. A 127, 290–297 (1930).

    ADS  Google Scholar 

  149. A.A. Griffith, The phenomena of rupture and flow in solids, Philos. Trans. Roy. Soc. Lond., Ser. A 221, 163–198 (1921).

    ADS  Google Scholar 

  150. C. Messmer, J.C. Bilello, The surface energy of Si GaAs and GaP, J. Appl. Phys. 52(7), 4623–4629 (1981).

    Article  ADS  Google Scholar 

  151. S.P. Jarvis, Adhesion on the nanoscale, in: Nano-Surface Chemistry, ed. M. Rosoff (Marcel Dekker, New York, 2002), pp. 17–58.

    Google Scholar 

  152. W.D. Kingrey, Absolute measurement of metal-ceramic interfacial energy and the interfacial adsorption of silicon from iron-silicon alloys, in: Study of Metal-Ceramic Interactions at Elevated Temperatures, ed. F.H. Norton, W.D. Kingery, G. Economos, M. Humenik (U.S. Atomic Energy Commission, NYO-3144, 1953), 83 pp.

    Google Scholar 

  153. T. Sano, D.M. Saylor, G.S. Rohrer, Surface energy anisotropy of SrTiO3 at 1400°C in air, J. Am. Ceram. Soc. 86(11), 1933–1939 (2003).

    Google Scholar 

  154. V.T. Borisov, V.M. Golikov, G.C. Shcherbedinskii, Connection between diffusion coefficients and energies of grain boundaries, Fizika Metallov i Metallovedenie 17(6), 881–885 (1964).

    Google Scholar 

  155. L. Wang, K. Vu, A. Navrotsky, R. Stevens, B.F. Woodfield, Boerio-J. Goates, Synthesis, surface energy and magnetic transition of CoO nanoparticles, Chem. Mater., 16(25), 5394–5400 (2004).

    Article  Google Scholar 

  156. H.F. Holmes, E.L. Fuller Jr., R.B. Gammage, Heats of immersion in the zirconium oxide-water system, J. Phys. Chem. 76(10), 1497–1502 (1972).

    Article  Google Scholar 

  157. B. Bachiller-Baeza, I. Rodriguez-Ramos, A. Guerrero-Ruiz, Interaction of carbon dioxide with the surface of zirconia polymorphs, Langmuir 14(13), 3556–3564 (1998).

    Article  Google Scholar 

  158. S. Lipsett, G F.M. Johnson, G.O. Maass, The surface energy and the heat of solution of solid sodium chloride I–III, J. Am. Chem. Soc. 49, 925–943 (1927) idem. ibid. 1940–1949 (1927); idem. ibid. 50, 2701–2703 (1928).

    Article  Google Scholar 

  159. A. Navrotsky, Progress and new directions in high temperature calorimetry, Phys. Chem. Mineral 2, 89–104 (1977).

    Article  ADS  Google Scholar 

  160. A. Navrotsky, Progress and new directions in high temperature calorimetry revisited, Phys. Chem. Minerals. 24, 222–241 (1997).

    Article  ADS  Google Scholar 

  161. S.C. Mraw, Differential scanning calorimetry, in: Specific Heat of Solids, ed. C.Y. Ho (New York, 1988), pp. 395–435.

    Google Scholar 

  162. A.I. Bachinskii, Izv. Fizicheskogo Instituta pri Moskovskom Nauchnom Institute 11, 60 (1922). (Cited from V.K. Semenchenko Relationship between the volume and surface properties of metals and alloys, in: The role of surface phenomena in metallurgy, ed. V.N. Eremenko (Constants Bureau, New York, 1963), p. 9).

    Google Scholar 

  163. L.P.H. Jeurgens, W.G. Sloof, F.D. Tichelaar, E.J. Mittemeijer, Thermodynamic stability of amorphous oxide films on metals: Application to aluminum oxide films on aluminum substrates, Phys. Rev. B: Condens. Matter Mater. Phys. 62(7), 4707–4719 (2000).

    ADS  Google Scholar 

  164. J. Banfield, F.H. Zhang, Nanoparticles in the environment, Rev. Mineral. Geochem. 44, 1–58 (2001).

    Article  Google Scholar 

  165. C.R.A. Catlow, J.D. Gale, D.H. Gay, M.A. Nygren, D.C. Sayle, Computer modelling of surfaces and interfaces, in: Interfacial Science, ed. M.W. Roberts (Blackwell Science, Oxford; Malden, MA, 1997), pp. 195–215.

    Google Scholar 

  166. R. Buczko, S.J. Pennycook, S.T. Pantelides, Bonding arrangements at the Si-SiO2 and SiC-SiO2 interfaces and a possible origin of their contrasting properties, Phys. Rev. Lett. 84(5), 943–946 (2000).

    Article  ADS  Google Scholar 

  167. A.A. Demkov, Investigating alternative gate dielectrics: a theoretical approach, Phys. Stat. Sol. (b) 226(1), 57–67 (2001).

    Article  ADS  Google Scholar 

  168. A. Christensen, E.A. Carter, First principles study of the surfaces of zirconia, Phys. Rev. B 58(12), 8050–8064 (1998).

    Article  ADS  Google Scholar 

  169. A.A. Demkov, O.F. Sankey, Growth study and theoretical investigation of the ultra-thin oxide SiO2-Si heterojunction, Phys. Rev. Lett. 83, 2038 (1999).

    Article  ADS  Google Scholar 

  170. X. Zhang, A.A. Demkov, Steps on the (001) SrTiO3 surface, J. Vac. Sci. Technol. B 20, 1664 (2002).

    Article  Google Scholar 

  171. X. Zhang, A.A. Demkov, H. Li, X. Hu, Y. Wei, J. Kulik, The atomic and electronic structure of the Si/SrTiO3 interface, Phys. Rev. B 68, 125–323 (2003).

    Google Scholar 

  172. Peacock, P.W., J. Robertson, Bonding, energies, and band offsets of Si-ZrO2 and HfO2 gate oxide interfaces, Phys. Rev. Lett. 92(5), 057601/1–4 (2004).

    Article  ADS  Google Scholar 

  173. V. Fiorentini, G. Gulleri, Theoretical evaluation of zirconia and fafnia as gate oxides for Si microelectronics, Phys. Rev. Let. 89(26), 266101/1–4 (2002).

    ADS  Google Scholar 

  174. S. Blonski, S.H. Garofalini, Molecular dynamics simulations of α-alumina and γ-alumina surfaces, Surface Sci. 295(1–2), 263–74 (1993).

    Article  ADS  Google Scholar 

  175. I. Manassidis, M.J. Gillan, Structure and energetics of alumina surfaces calculated from first principles, J. Am. Ceram. Soc. 77(2), 335–338 (1994).

    Article  Google Scholar 

  176. M.A. Berding, S. Krishnamurthy, A. Sher, A.B. Chen, Cleavage energies in semiconductors, J. Appl. Phys. 67(10), 6175–6178 (1990).

    Article  ADS  Google Scholar 

  177. R.A. Robie, B.S. Hemingway, Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (10 5 Pascals) Pressure and at Higher Temperatures U.S. Geological Survey Bulletein 2131, Washington, DC, 1995).

    Google Scholar 

  178. R.A. Robie, B.S. Hemingway, J.R. Fisher, Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (10 5 Pascals) Pressure and at Higher Temperatures (U.S. Geological Survey Bulletin 1452, Washington, DC, 1979).

    Google Scholar 

  179. P. Glushko, V.A. Medvedev, Termicheskie Konstanty Veshestv (Akademia, Nauk, Moscow, 1978).

    Google Scholar 

  180. K.B. Helean, A. Navrotsky, R.C. Ewing, in preparation

    Google Scholar 

  181. A.N. Kornilov, I.M. Ushakova, E.J. Huber Jr., C.E. Holley Jr., Enthalpy of formation of hafnium dioxide, J. Chem. Thermodyn. 7(1), 21–26 (1975).

    Google Scholar 

  182. W. Roth, G. Becker, Atomic number and heat of formation, Z. Phys. Chem. A159, 1–26 (1932).

    Google Scholar 

  183. G.L. Humphrey, Heats of formation of hafnium oxide and hafnium nitride, J. Am. Chem. Soc. 75, 2806 (1953).

    Article  Google Scholar 

  184. E.J. Huber Jr., C.E. Holley Jr., Enthalpy of formation of hafnium dioxide, J. Chem. Eng. Data 13(2), 252–253 (1968).

    Google Scholar 

  185. A.N. Kornilov, I.M. Ushakova, Standard heat of formation of hafnium dioxide, Doklady Akad. Nauk SSSR [Phys. Chem.], 200(6), 1382–1384 (1971).

    Google Scholar 

  186. Yu.N. Paputskii, V.A. Krzhizhanovskaya, V.B. Glushkova, Enthalpies of formation of rare earth hafnates and zirconates, Izv. Akad. Nauk SSSR Neorg. Mater. 10(8), 1551–1552 (1974).

    Google Scholar 

  187. A.-D. Li, Q.-Y. Shao, H.-Q. Ling, Cheng Jin-Bo, Wu Di, Z.-G. Liu, N.-B. Ming, C. Wang, H.-W. Zhou, B.-Y. Nguyen, Characteristics of LaAlO3 gate dielectrics on Si grown by metalorganic chemical vapor deposition., Appl. Phys. Lett. 83(17), 3540–3542 (2003).

    Article  ADS  Google Scholar 

  188. X. Zhao, D. Vanderbilt, First-principles study of structural vibrational and lattice dielectric properties of hafnium oxide, Phys. Rev. B 65, 233106-1–4 (2002).

    ADS  Google Scholar 

  189. J. Majzlan, A. Navrotsky, W.H. Casey, Surface enthalpy of boehmite,Clays and Clay Minerals 48, 699–707 (2000).

    Google Scholar 

  190. D.T. Livey, P. Murray, Surface energies of solid oxides and carbides, J. Am. Ceram. Soc. 39(11), 363–372 (1956).

    Google Scholar 

  191. K.B. Helean, A. Navrotsky, Oxide melt solution calorimetry of rare earth oxides. Techniques problems cross-checks successes, J. Thermal Anal. Calorim. 69(3), 751–771 (2002).

    Article  Google Scholar 

  192. I. Barin, Thermochemical Data of Pure Substances (VCH, Weinheim, Germany, 1989).

    Google Scholar 

  193. S. Brunauer, Surface energy of a calcium silicate hydrate, J. Colloid Interface Sci. 59(3), 433–437 (1977).

    Article  Google Scholar 

  194. L. Shartsis, S. Spinner, Surface tension of molten alkali silicates J. Research Natl. Bur. Standards 46, 385–390 (1951); Research Paper No. 2209 (cited from Brunauer, 1956).

    Google Scholar 

  195. S. Brunauer, D.L. Kantro, C.H. Weise, Surface energies of lime and calcium hydroxide, Can. J. Chem. 34, 729–742 (1956).

    Article  Google Scholar 

  196. S. Brunauer, D.L. Kantro, C.H. Weise, The surface energies of amorphous silica and hydrous amorphous silica, Can. J. Chem. 34, 1483–1496 (1956).

    Article  Google Scholar 

  197. F.H. Norton, W.D. Kingery, G. Economos, M. Humenik Jr., Metal-Ceramic Interactions at Elevated Temperatures, Vol. 83 (U.S. Atomic Energy Commission National Science Foundation, Washington, DC, NYO-3144, 1953).

    Google Scholar 

  198. R.N. Patil, E.C. Subbarao, Axial thermal expansion of zirconium oxide [zirconia] and hafnium oxide [hafnia] in the range room tempteraure to 1400°C, J. Appl. Crystallogr. 2(Pt. 6), 281–288 (1969).

    Article  Google Scholar 

  199. M. Foex, J.P. Traverse, Crystalline transformations induced by high temperatures in rare earth sesquioxides, Comptes Rendus des Seances de l’Academie des Sciences Serie C: Sciences Chimiques Ser. C 262(8), 636–639 (1966).

    Google Scholar 

  200. L.M. Lopato, A.V. Shevchenko, A.E. Kushchevskii, S.G. Trevyatskii, Polymorphic transformations in rare earth oxides at high temperatures, Izv. Akad. Nauk SSSR Neorg. Mater. 10(8), 1481–1487 (1974) (PDFC 6343).

    Google Scholar 

  201. W.C. Butterman, W.R. Foster, Zircon stability and the zirconium oxide-silica phase diagram, Am. Mineral. 52(5–6), 880–885 (1967).

    Google Scholar 

  202. V.N. Parfenenkov, R.G. Grebenshikov, N.A. Toropov, Phase equilibriums in the hafnium dioxide-silicon dioxide system, Dokl. Akad. Nauk SSSR 185(4), 840–842 (1969).

    Google Scholar 

  203. S.M. Lakiza, L.M. Lopato, Stable and metastable phase relations in the system alumina-zirconia-yttria, J. Am. Cer. Soc. 80(4), 893–902 (1997).

    Article  Google Scholar 

  204. D.A. Neumayer, E. Cartier, Materials characterization of ZrO2-SiO2 and HfO2-SiO2 binary oxides deposited by chemical solution deposition, J. Appl. Phys. 90(4), 1801–1808 (2001).

    Article  ADS  Google Scholar 

  205. J. Zhu, Z.G. Liu, Dielectric properties of YSZ high-k thin films fabricated at low temperature by pulsed laser deposition, Mater. Lett. 57, 4297–4301 (2003).

    Article  Google Scholar 

  206. J. Zhu, Z.G. Liu, Structure and dielectric properties of Zr-Al-O thin films prepared by pulsed laser deposition. Microelectron. Eng. 66(1–4), 849–854 (2003).

    Article  Google Scholar 

  207. C. Zhao, O. Richard, E. Young, H. Bender, G. Bender, G. Roebben, S. Haukka, S. De Gendt, M. Houssa, R. Carter, W. Tsai, O. Van Der Biest, M. Heyns, Thermostability of amorphous zirconium aluminate high-k layers, J. Non-Cryst. Solids 303, 144–149 (2002).

    Article  ADS  Google Scholar 

  208. C. Pascual, P. Duran, Subsolidus phase equilibriums and ordering in the system zirconiayttria, J. Am. Ceram. Soc. 66(1), 23–27 (1983). (PDFC 93-055).

    Google Scholar 

  209. D.W. Stacy, D.R. Wilder, Yttria-hafnia system, J. Am. Ceram. Soc. 58(7–8), 285–288 (1975).

    Google Scholar 

  210. P. Duran, Phase relations in the systems hafnium dioxide-lanthanum oxide and hafnium dioxide-neodymium oxide, Ceram. Int. 1(1), 10–13 (1975).

    Article  Google Scholar 

  211. A.V. Shevchenko, L.M. Lopato, A.K. Ruban, Reaction studies in the hafnium dioxide-lanthanum hafnate system, Dopovidi Akademii Nauk Ukrains’koi RSR Seriya B: Geologichni Khimichni ta Biologichni Nauki 10, 922–925 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Navrotsky, A., Ushakov, S.V. (2005). Thermodynamics of Oxide Systems Relevant to Alternative Gate Dielectrics. In: Demkov, A.A., Navrotsky, A. (eds) Materials Fundamentals of Gate Dielectrics. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3078-9_3

Download citation

Publish with us

Policies and ethics