Skip to main content
Log in

Correctness of Fractal Analysis of Fractographic Surface Microstructure According to Digital SEM Photogrammetry

  • STRUCTURAL MATERIALS RESEARCH
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The fractal analysis of fractographic surfaces employing digital processing of scanning electron microscope (SEM) images is considered. Mathematical tools for digital photogrammetry, particularly in stereological or stereometric options, are proposed. The mathematical formalism for processing SEM images is employed. The fractal analysis of SEM images is analyzed for correctness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. V. V. Polyakov, S. V. Kucheryavski, and A. V. Egorov, “Investigation of fractal properties of porous metal materials,” in: D. Jouffrey and J. Svejcar (eds.), Proc. Eur. Conf. Euromat–99. Microstructural Investigation and Analysis, Wiley–VCH, Weinheim, Germany (2000), Vol. 4, pp. 7–10.

  2. R. Williford, “Multifractal fracture,” Scripta Metall., 22, 1749–1754 (1988).

    Article  CAS  Google Scholar 

  3. J. Stampfl, S. Scherer, M. Gruber, and O. Kolednik, “Determination of the fracture toughness with automatic image processing,” Int. J. Fract., 78, 35–44 (1996).

    Article  CAS  Google Scholar 

  4. D. G. Tigetov and Yu. A. Goritskii, “Markovian model for mechanical interaction of rough surfaces in the friction process,” Tren. Smaz. Mash. Mech., No. 3, 4–13 (2010).

  5. B. Mandelbrot, The Fractal Geometry of Nature, San Francisco, USA (1984), p. 468.

  6. J. Feder, Fractals, Plenum Press, New York (1988).

    Book  Google Scholar 

  7. I. M. Zhuravel, “Texture analysis of fractographic images based on Rényi fractal dimensions,” Iskusstv. Intell., No. 1, 204–208 (2013).

  8. I. G. Grabar, O. I. Grabar, O. A. Gutnichenko, and Yu. O. Kubrak, Percolation Fractal Materials: Properties, Technologies, Applications: Research Monograph [in Ukrainian], Zhytomyr Derzh. Tekh. Univ., Zhytomyr (2007), p. 370.

    Google Scholar 

  9. V. Mel’nik, O. Piskunova, and L. Vakulyuk, “Fractal analysis of SEM images using wavelets,” Nat. Tech. Sci.: Sci. Educ. New Dimens., IV (10), Issue 91, 50–54 (2016).

  10. Yu. A. Fadin and Yu. P. Kozyrev, “Fractal features of wear particles,” Pis’ma Zh. Tekh. Fiz., 26, No. 13, 46–50 (2000).

    Google Scholar 

  11. V. M. Mel’nik and A. V. Shostak, Quantitative Stereomicrofractography: Monograph [in Ukrainian], Tverdynya, Lutsk (2010), p. 460.

    Google Scholar 

  12. V. M. Mel’nik, V. D. Rud’, and Yu. A. Mel’nik, “Mathematical formalism of pore stereology of powder materials,” Powder Metall. Met. Ceram., 53, No. 1–2, 107–112 (2014).

    Article  Google Scholar 

  13. A. V. Shostak and Yu. A. Mel’nik, “Application of fractal geometry principle in metallurgical and materials science problems,” Nauk. Visn. Novi Tekhnol., No. 1, 68–73 (2012).

  14. Yu. A. Mel’nik, “Three-dimensional fractographic characterization of regular-shaped and randomized surfaces,” in: Resource-Saving Materials, Structures, and Buildings (Collected Scientific Papers) [in Ukrainian], Issue 24, 356–365 (2012).

  15. K. S. Chernyavskii, Stereology in Metallurgical Science [in Russian], Metallurgiya, Moscow (1977), p. 384.

    Google Scholar 

  16. M. G. Kendall and P. A. P. Moran, Geometrical Probability, Griffin, London (1963).

    Google Scholar 

  17. B. N. Grudin, V. S. Plotnikov, A. V. Kirilov, et al., “Fractal analysis and filtration of electron microscopy images of nanostructures,” in: Proc. 24th All-Russ. Conf. Electron Microscopy [in Russian], Chernogolovka (2010), p. 53.

  18. R. L. Legotkin, Study of Fractal Analysis Methods for Thematic Interpretation of Aerial Photographs [in Russian], Author’s Abstract of PhD Thesis in Technical Sciences, 25.00.34, Mosk. Gov. Univ. Geodez. Kartograf., Moscow (2002), p. 22.

  19. J. M. Keller, S. Chen, and R. Crownover, “Texture description through fractal geometry,” Comput. Vis. Graphics Image Process., 45, No. 1, 150–166 (1989).

    Article  Google Scholar 

  20. N. Yokoya, K. Yamamoto, and N. Funakubo, “Fractal-based analysis and interpolation of 3D natural surface shapes and their application to terrain modeling,” Comput. Vis. Graphics Image Process., 46, No. 3, 284–302 (1989).

    Article  Google Scholar 

  21. S. Peleg, J. Naor, R. Hartley, and D. Avnir, “Multiple resolution texture analysis and classification,” IEEE Trans. Pattern Anal. Mach. Intell., 6, Issue III (4), 518–552 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Rud.

Additional information

Translated from Poroshkova Metallurgiya, Vol. 57, Nos. 5–6 (521), pp. 134–143, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melnyk, V.M., Rud, V.D. & Melnyk, Y.A. Correctness of Fractal Analysis of Fractographic Surface Microstructure According to Digital SEM Photogrammetry. Powder Metall Met Ceram 57, 353–360 (2018). https://doi.org/10.1007/s11106-018-9991-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-018-9991-z

Keywords

Navigation