Skip to main content

Advertisement

Log in

Synthesis and Study of High-Purity Nanocrystalline Powder of a Solid Solution of CeO2 and Y2O3 in Zirconium Dioxide

  • REFRACTORY AND CERAMIC MATERIALS
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

A technology for synthesizing a high-purity nanocrystalline powder of zirconia doped with yttrium oxide and ceric oxide, namely ZrO2 (5% Y2O3 and 3% CeO2), is developed. The powder is characterized by high activity during sintering and the absence of hard agglomerates. The technology can be used to synthesize powders for manufacturing structural, functional, and medical purpose non-ageing ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. A. V. Shevchenko, A. K. Ruban, and E. V. Dudnik, “High-tech ceramics based on zirconium dioxide,” Ogneup. Tekhn. Keram., No. 9, 2–8 (2000).

  2. R. A. Andrievskii and A. M. Glezer, “Size-effects in nanocrystalline materials. II. Mechanical and physical properties,” Fiz. Metal. Materialloved., 89, No. 1, 91–112 (2000).

    Google Scholar 

  3. I. P. Suzdalev and P. I. Suzdalev, “Discreteness of nanostructures and critical dimensions of nanoclusters,” Usp. Khimii, 75, No. 8, 715–752 (2006).

    Google Scholar 

  4. A. Dietrich, A. Neubrand, and Y. Hirata, “Filtration behavior of nanoparticulate ceria slurries,” J. Am. Ceram. Soc., 85, No. 11, 2719–2724 (2002).

    Article  Google Scholar 

  5. S. Somiya and R. Roy, “Hydrothermal synthesis of fine oxide powders,” Bull. Mater. Sci., 23, No. 6, 453–460 (2000).

    Article  Google Scholar 

  6. T. Tsukada, S. Venigalla, A. A. Morrone, and J. H. Adair, “Low-temperature hydrothermal synthesis of yttrium-doped zirconia powders,” J. Am. Ceram. Soc., 82, No. 5, 1169–1174 (1999).

    Article  Google Scholar 

  7. B. Xia, L. Duan, and Y. Xie, “ZrO2 nanopowders prepared by low-temperature vapor-phase hydrolysis,” J. Am. Ceram. Soc., 83, No. 5, 1077–1080 (2000).

    Article  Google Scholar 

  8. R. R. Piticescu, C. Monty, D. Taloi, et al., “Hydrothermal synthesis of zirconia nanomaterials,” J. Eur. Ceram. Soc., 21, 2057–2060 (2001).

    Article  Google Scholar 

  9. K. Matsui and M. Ohgai, “Formation mechanism of hydrous zirconia particles produced by hydrolysis of ZrOCl2 solutions: IV. Effect of ZrOCl2 concentration and reaction temperature,” J. Am. Ceram. Soc., 85, No. 3, 545–553 (2002).

    Article  Google Scholar 

  10. A. V. Shevchenko, E. V. Dudnik, A. K. Ruban, et al., “Hydrothermal synthesis of nanocrystall powders in the ZrO2–Y2O3–CeO2 system,” Powder Metall. Met. Ceram., 46, No. 1–2, 18–24 (2007).

    Article  Google Scholar 

  11. A. V. Shevchenko, “Hydrothermal technologies in material science,” in: Inorganic Material Science: Fundamentals of Materials Science [in Russian], Vol. 2, Naukova Dumka, Kiev (2008), pp. 272–278.

  12. E. V. Dudnik, “Modern methods for hydrothermal synthesis of ZrO2-based nanocrystalline powders,” Powder Metall. Met. Ceram., 48, No. 3–4, 238–248 (2009).

    Article  Google Scholar 

  13. P. M. Kelly and L. R. Francis Rose, “The martensitic transformation in ceramics its role in transformation toughening,” Progr. Mater. Sci., 47, 463–557 (2002).

    Article  Google Scholar 

  14. J. Chevalier, L. Gremillard, and S. Deville, “Low-temperature degradation of zirconia and implications for biomedical implants,” Annual Rev. Mater. Res., 37, 1–32 (2007).

    Article  Google Scholar 

  15. J. Chevalier and L. Gremillard, “Ceramics for medical applications: A picture for next 20 years,” J. Eur. Ceram. Soc., 29, No. 7, 1245–1255 (2009).

    Article  Google Scholar 

  16. H. Schubert and F. Frey, “Stability of Y-TZP during hydrothermal treatment neutron experiments and stability considerations,” J. Eur. Ceram. Soc., 25, 1597–1602 (2005).

    Article  Google Scholar 

  17. S. V. Anisimova, L. I. Podzorova, L. I. Shvorneva, et al., “Development of zirconia-based modified dental material,” Stomatologiya, No. 5, 10–13 (2011).

  18. G. Ya. Akimov, G. A. Marinin, and V. M. Timchenko, “Effect of tetragonal phase modifications in the surface layer on the strength of zirconia-based ceramics,” Fiz. Tverd. Tela, 47, No. 11, 1978–1980 (2005).

  19. V. V. Lashneva, A. V. Shevchenko, and E. V. Dudnik, “Zirconia-based ceramics,” Steklo Keram., No. 4, 25–28 (2009).

  20. A. V. Shevchenko, V. V. Tsukrenko, and E. V. Dudnik, “Ageing resistant ZrO2-based biomedical implants,” Sovr. Prom. Fiz. Materialloved., No. 21, 101–107 (2012).

  21. E. V. Dudnik, A. V. Shevchenko, A. K. Ruban, at al., “Microstructural design of ZrO2–Y2O3–CeO2–Al2O3 materials,” Powder Metall. Met. Ceram., 49, No. 9–10, 43–54 (2010).

  22. A. V. Shevchenko, E. V. Dudnik, A. K. Ruban, at al., “Diffusion interaction during preparation of nanocrystalline powders in the system ZrO2–Y2O3,” Powder Metall. Met. Ceram., 44, No. 3–4, 105–111 (2005).

  23. S. Deville, J. Chevalier, and L. Gremillard, “Influence of surface finish and residual stresses on the ageing sensitivity of biomedical grade zirconia,” Biomaterials, 27, 2186–2192 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Lashneva.

Additional information

A. V. Shevchenko is Deceased.

Translated from Poroshkovaya Metallurgiya, Vol. 54, Nos. 9–10 (505), pp. 53–60, 2015. Original article

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevchenko, A.V., Lashneva, V.V., Ruban, A.K. et al. Synthesis and Study of High-Purity Nanocrystalline Powder of a Solid Solution of CeO2 and Y2O3 in Zirconium Dioxide. Powder Metall Met Ceram 54, 548–553 (2016). https://doi.org/10.1007/s11106-016-9748-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-016-9748-5

Keywords

Navigation