Skip to main content

Advertisement

Log in

Evaluating the Energy Content of Nonequilibrium Tungsten and Molybdenum Carbide Structures

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The paper shows that X-ray diffraction can be used to evaluate changes in the energy content of materials after mechanical activation to determine the energy characteristics of powder tungsten and molybdenum carbides in the feedstock preparation process. This is important for controlling the properties of tungsten carbide hardmetals and inoculating castings using molybdenum carbides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. ΔE d = KE l, where K is the coefficient of relative change in volume of the elementary cell of the concentrate phase; E l is lattice energy of the mineral.

  2. ΔE s = 6E s V mol(1/D i – 1/D o), where E s is surface energy; V mol is molar volume; D i , D o are sizes of CSDs for the mineral after and before MA.

  3. \( \varDelta {E}_{\varepsilon }=\frac{3}{2}{E}_{\mathrm{Y}}\left({\varepsilon}_i^2-{\varepsilon}_{\mathrm{o}}^2\right)\ {V}_{\mathrm{mol}} \), where E Y is Young’s modulus; ε i , εo are root-mean-square microstrains of the mineral after and before MA.

  4. For anions, ec = z 2/2r; for cations, ec = z 2/2r0.75 (r + 0.2).

  5. ΔE МАd is the amount of energy used to change interplanar spacing in lattice during MA.

  6. ΔE МОd is the amount of energy used to change interplanar spacing in lattice during thermal destruction of metal organic mixtures.

References

  1. G. Gille, B. Szeny, K. Dreyer, et al., “Submicron and ultrafine grained hard metals for microdrills and metal cutting inserts,” in: Proc. 15th Int. Plansee Seminar, Reutte, Austria (2001), Vol. 2, pp. 782–816.

  2. Lin Sha Gang, Yang Gnibin, et al., “Production of nanocrystalline WC/Co with Y additions,” J. Chin. Rare Earth Soc., 21, No. 6, 29–34 (2003).

  3. A. G. Ermilov, V. V. Safonov, L. F. Doroshko, et al., “X-ray analysis of the amount of energy stored during preliminary mechanical activation,” Izv. Vuzov. Tsvet. Metall., No. 3, 48–53 (2002).

  4. B. F. Ormont, Introduction to Physical Chemistry and Crystal Chemistry of Semiconductors [in Russian], Vysshaya Shkola, Moscow (1973), p. 656.

    Google Scholar 

  5. V. A. Alekseenko, “Basic factors of accumulating chemical elements by organisms,” Soros. Obraz. Zh., 7, No. 8, 20–24 (2001).

    Google Scholar 

  6. V. V. Zuev, G. Ya. Askenova, N. A. Mochalov, et al., “Using specific lattice energies of minerals and inorganic crystals to evaluate their properties,” Obogashch. Rud, No. 1–2, 48–53 (1999).

  7. I. T. Goronovskii, Yu. P. Nazarenko, and E. F. Fekryach, A Short Chemistry Handbook [in Russian], Izd. Akad. Nauk USSR, Kiev (1962), p. 660.

    Google Scholar 

  8. K. A. Bol’shakov, Chemistry and Technology of Rare and Trace Elements [in Russian], Vysshaya Shkola, Moscow (1976), Part 3, p. 321.

  9. R. A. Andrievskii and I. I. Spivak, Strength of Refractory Compounds and Associated Materials: Handbook [in Russian], Metallurgiya, Chelyabinsk (1989), p. 368.

    Google Scholar 

  10. T. Ya. Kosolapova, Carbides [in Russian], Metallurgiya, Moscow (1968), p. 300.

    Google Scholar 

  11. Wear-Resistant Materials with High Hardness: Superhard Materials, Metallic Compounds, Nonmetallic Oxygen-Free Compounds; Information for Engineers; R&D, Engineering Calculations and Services; URL: http://www.highexpert.ru/content/hwr_materials/ hard_materials.html (inquiry date: May 17, 2013).

  12. Tungsten Carbide (WC), Bulk; An information portal for the MEMS and Nanotechnology Community; URL: http://www.memsnet.org/material/tungstencarbidewcbulk (inquiry date: May 27, 2013).

  13. Mc. A. J. Ginnis, R. Thomas, W. Jagannadham, and K. Jagannadham, Residual Stresses in a Multilayer System of Coatings, Copyright JCPDS, International Centre for Diffraction Data (1999), pp. 443–457.

  14. G. V. Samsonov (ed.), Carbides and Their Alloys [in Russian], Naukova Dumka, Kiev (1976), p. 305.

    Google Scholar 

  15. G. I. Kostyuk and O. M. Melkozerova, “Evaluating adhesion characteristics of materials in contact with coatings,” Aviats. Kosm. Tekh. Tekhnol., No. 3, 16–22 (2011).

  16. V. A. Rabinovich and Z. Ya. Khavin, A Short Chemistry Handbook [in Russian], Khimiya, Leningrad (1977), p. 376.

    Google Scholar 

  17. M. I. Dvornik and E. A. Mikhailenko. “Hardness evaluation of VK8 hardmetal with the finite-element method,” Khim. Fiz. Mezoskop., 11, No. 4, 433–440 (2009).

    Google Scholar 

  18. A. N. Zelikman and L. S. Nikitina, Tungsten [in Russian], Metallurgiya, Moscow (1978), p. 272.

    Google Scholar 

  19. A. G. Ermilov, N. N. Rakova, A. F. Borun, and A. M. Dodonov, “Factors influencing the formation of metal–carbon bonds in organometallic mixtures,” Izv. Vuzov. Tsvet. Metall., No. 1, 28–34 (2007).

  20. G. M. Vol’dman, A. G. Ermilov, and N. N. Rakova, “Oxygen effect on the production of nanosized tungsten- and molybdenum-containing powder materials,” Tsvet. Met., No. 8, 82–86 (2007).

  21. A. G. Ermilov, E. V. Bogatyreva, and T. A. Sviridova, “Composition and parameters of tungsten-containing nanocrystalline organometallic structures,” Izv. Vuzov. Tsvet. Metall., No. 4, 47–51 (2009).

  22. A. N. Zelikman, Molybdenum [in Russian], Metallurgiya, Moscow (1970), p. 440.

    Google Scholar 

  23. A. G. Ermilov and N. N. Rakova, “Factors influencing the thermal stability of metastable phases of tungsten and molybdenum subcarbides,” Tsvet. Met., No. 1, 67–69 (2007).

  24. A. G. Ermilov and N. N. Rakova “Effect of nucleation centers on nanostructure formation during decomposition of organometallic compounds,” Izv. Vuzov. Tsvet. Metall., No. 5, 46–54 (2007).

  25. V. V. Zuev, G. A. Aksenova, N. A. Mochalov, et al., “Studying the specific lattice energies of minerals and inorganic crystals to evaluate their properties,” Obogashch. Rud, No. 1–2, 48–53 (1999).

  26. V. Falcovsky, Y. Blagoveschski, L. Klyachko, et al., “Nanocrystalline WC–Co hard metals produced by plasmochemical method,” in: Proc. 15th Int. Plansee Seminar, Reutte, Austria (2001), Vol. 2, pp. 91–96.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Bogatyreva.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 53, Nos. 7–8 (498), pp. 69–80, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogatyreva, E.V., Ermilov, A.G. Evaluating the Energy Content of Nonequilibrium Tungsten and Molybdenum Carbide Structures. Powder Metall Met Ceram 53, 431–440 (2014). https://doi.org/10.1007/s11106-014-9635-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-014-9635-x

Keywords

Navigation