Skip to main content
Log in

Analysis of Expression, Mutation, and Alternative Splice Variants of Candidate Genes, MLO2 and MLO6A, Involved in Powdery Mildew Susceptibility in Mulberry (Morus spp.)

  • RESEARCH
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Mulberry is a fast-growing perennial crop commercially exploited as the sole source of food for the mulberry silkworm, Bombyx mori, for the production of silk. Powdery mildew disease is a major foliar disease that greatly affects the sericulture industry. Understanding the genetic basis of powdery mildew disease resistance and its utilization for developing resistant varieties is the primary approach to mulberry crop improvement. Both natural and induced mutations impairing the function of the Mildew resistance Locus O (MLO) gene leading to powdery mildew resistance have been identified in different crop plants. However, more studies are required focusing on MLO gene-based resistance in natural germplasm. In this study, previously identified candidate genes, MLO2 and MLO6A, involved in powdery mildew susceptibility in mulberry were analyzed for gene expression, mutation, and alternative splice variants. In some tolerant accessions, MLO2 and MLO6A show either reduced or no elevated expression under infected conditions. Publicly available whole genome re-sequenced data analysis from mulberry accessions identified single amino acid substitutions in the MLO2 and MLO6A genes. Further, alternative splice variants of intron retention and exon skipping resulted in premature stop codon leading to the production of truncated MLO2 protein which were detected in tolerant mulberry accessions. This study will pave for better understanding of powdery mildew disease resistance and for breeding program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Materials

All data generated or analyzed during this study are included in this published article.

References

Download references

Funding

This work was financially supported by the Central Silk Board, Government of India, through project code PRP08002MI.

Author information

Authors and Affiliations

Authors

Contributions

AR, HD, KMP, and VS Conceived and designed the experiments. MR, AR, HD, Naleen, PS, and KS performed the experiments and analyzed the results. AR prepared the manuscript draft. HD and PS edited the manuscript. All authors have read the manuscript and approved it for publication.

Corresponding author

Correspondence to A. Ramesha.

Ethics declarations

Ethical Approval

This article does not contain any studies with human or animal; therefore, ethical approval is not required.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, M., Ramesha, A., Dubey, H. et al. Analysis of Expression, Mutation, and Alternative Splice Variants of Candidate Genes, MLO2 and MLO6A, Involved in Powdery Mildew Susceptibility in Mulberry (Morus spp.). Plant Mol Biol Rep (2024). https://doi.org/10.1007/s11105-024-01457-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11105-024-01457-2

Keywords

Navigation