Skip to main content
Log in

Multiple microRNAs Regulate the Floral Development and Sex Differentiation in the Dioecious Cucurbit Coccinia grandis (L.) Voigt

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Despite having a small genome and heteromorphic sex chromosomes, the molecular basis of sex differentiation in the dioecious cucurbit, Coccinia grandis, largely remains unclear. Increasing evidences indicate a vital regulatory role of microRNAs in the reproductive development of plants. In this study, we used a combination of high-throughput small RNA sequencing and computational analysis to identify sex-specific miRNAomes from male and female buds of C. grandis. Ninety-eight conserved miRNAs from 22 families and 44 novel miRNAs specific to C. grandis were detected. Comparative profiling together with Northern blot and qRT-PCR analysis revealed 41 significantly differentially expressed (DE) miRNAs, of which 16 could be fundamental to the regulation of sexual dimorphism. One hundred six target genes were predicted for 35 DE miRNAs that were significantly involved in flower organogenesis, phytohormone signaling, metabolism, transcription regulation, and DNA methylation. Temporal analysis of a set of 16 target genes at three stages of the bud development revealed a reciprocal alteration in their expression pattern with the complementary miRNAs. Further, the miR167a-1, miR393a, miR398b, and miRn9 mediated down-regulation of four predicted targets associated with reproductive organ development in C. grandis was confirmed through transient co-expression in Nicotiana benthaminana. Taken together, the present study represents the first report suggesting that multiple miRNA-mediated gene silencing cascade could be involved in regulating the molecular basis of sex differentiation in C. grandis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akagi T, Henry IM, Tao R, Comai L (2014) A Y-chromosomes-encoded small RNA acts as a sex determinant in persimmons. Science 346:646–650

    Article  CAS  PubMed  Google Scholar 

  • Ao Y, Wang Y, Chen L, Wang T, Yu H, Zhang Z (2012) Identification and comparative profiling of microRNAs in wild-type Xanthocerus sorbifolia and its double flower mutant. Genes Genomics 34:561–568

    Article  CAS  Google Scholar 

  • Aryal R, Ming R (2014) Sex determination in flowering plants: papaya as a model system. Plant Sci 217-218:56–62

    Article  CAS  PubMed  Google Scholar 

  • Bachtrog D, Mank JE, Peichel CL, Kirkpatrick M, Otto SP, Ashman TL, Hann MW, Kitano J, Mayrose I, Ming R, Perrin N, Ross L, Valenzuela N, Vamosi JC (2014) Sex determination: why so many ways of doing it? PLoS Biol 12:e1001899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergero R, Qiu S, Forrest A, Borthwick H, Charlesworth D (2013) Expansion of the pseudo autosomal region and ongoing recombination suppression in the Silene latifolia sex chromosomes. Genetics 194:673–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhowmick BK, Nanda S, Nayak S, Jha S, Joshi RK (2014) An APETALA3 MADS-box linked SCAR marker associated with male specific sex expression in Coccinia grandis (L).Voigt. Sci Hortic 176:85–90

    Article  CAS  Google Scholar 

  • Bonnet E, Wuyts J, Rouze P, Van de Peer Y (2004) Evidence that microRNAs precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences. Bioinformatics 20:2911–2917

    Article  CAS  PubMed  Google Scholar 

  • Cartolano M, Castillo R, Efremova N, Kuckenberg M, Zethof J, Gerats T, Schwarz-Sommer Z, Vandenbussche M (2007) A conserved microRNAs module exerts homeotic control over Petunia hybrida and Antirrhinum majus floral organ identity. Nat Genet 39:901–905

    Article  CAS  PubMed  Google Scholar 

  • Chand SK, Nanda S, Mishra R, Joshi RK (2017) Multiple garlic (Allium sativum L.) microRNAs regulate the immunity against the basal rot fungus Fusarium oxysporium f. sp.cepae. Plant Sci 257:9–21

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth D (2013) Plant sex chromosome evolution. J Exp Bot 64:405–420

    Article  CAS  PubMed  Google Scholar 

  • Chen ZH, Bao ML, Sun YZ, Yang YJ, Xu XH, Wang JH, Bian HW, Zhu MY (2011) Regulation of auxin response by miR393-targeted transport inhibitor response protein 1 is involved in normal development in Arabidopsis. Plant Mol Biol 77:619–629

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Li F, Yang S, Dong Y, Yuan Q, Wang F, Li W, Jiang Y, Jia S, Pei XW (2013) Identification and functional analysis of flowering related microRNAs in common wild rice (Oryza rifupogan Griff.). PLoS ONE 8:e82844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Zheng Y, Li Q, Wang Y, Chen L, He Y, Fei Z, Lu G (2016) Identification of miRNAs and their targets through high-throughput sequencing and degradome analysis in male and female Asparagus officinalis. BMC Plant Biol:16–80

  • Chuck G, Meeley R, Irish E, Sakai H, Hake S (2007) The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nat Genet 39:1517–1521

    Article  CAS  PubMed  Google Scholar 

  • Conesa A, Götz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 619832

  • Ghadge AG, Karmakar K, Devani RS, Banerjee J, Mohanasundaram B, Sinha RK, Sinha S, Banerjee AK (2014) Flower development, pollen fertility and sex expression analyses of three sexual phenotypes of Coccinia grandis. BMC Plant Biol 14:325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Ibeas D, Blanca J, Donaire L, Saladie M, Mascarell-Creus A, Cano-Delgado A, Garcia-Mas J, Llave C, Aranda AA (2011) Analysis of the melon (Cucumis melo) small RNAome by high-throughput pyrosequencing. BMC Genomics 12:393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holstein N, Renner SS (2011) A dated phylogeny and collection records reveal repeated biome shifts in the African genus Coccinia (Cucurbitaceae). BMC Evol Biol 11:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong Y, Jackson S (2015) Floral induction and flower formation—the role and potential applications of miRNAs. Plant Biotechnol J 13:282–292

    Article  CAS  PubMed  Google Scholar 

  • Hultquist JF, Dorweiler JE (2008) Feminized tassels of maize mop1 and ts1 mutants exhibit altered levels of miR156 and specific SBP-box genes. Planta 229:99–113

    Article  CAS  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  PubMed  Google Scholar 

  • Laufs P, Peaucelle A, Morin H, Traas J (2004) MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 131:4311–4322

    Article  CAS  PubMed  Google Scholar 

  • Li C, Zhang B (2016) MicroRNAs in control of plant development. J Cell Physiol 231:303–313

    Article  CAS  PubMed  Google Scholar 

  • Li B, Qin Y, Duan H, Yin W, Xia X (2011) Genome wide charactreization of new and drought stress responsive microRNAs in Populus euphratica. J Exp Bot 62:3765–3779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li WT, He M, Wang J, Wang Y (2013) Zinc finger protein (ZFP) in plants—a review. Plant Omics J 6:474–480

    CAS  Google Scholar 

  • Lin PC, Lu CW, Shen BN, Lee GZ, Bowmen JL, Artega-Vazquez MA, Liu LY, Hong SF, Lo CF, Su GM, Kohchi T, Ishizaki K, Zachgo S, Althoff F, Takenaka M, Yamato KT, Lin SS (2016) Identification of miRNAs and their targets in the liverwort Marchantia polymorpha by integrating RNA-Seq and degradome analyses. Plant Cell Physiol 57:339–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu N, Wu S, Houten JV, Wang Y, Ding Y, Fei Z (2014) Down-regulation of AUXIN RESPONSE FACTORS 6 and 8 by microRNAs 167 leads to floral development defects and female sterility in tomato. J Exp Bot 65:2507–2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real time quantitative PCR and. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Ma C, Yang J, Cheng Q, Mao A, Zhang J, Wang S, Weng Y, Wen C (2018) Comparative analysis of miRNA and mRNA abundance in determinate cucumber by high-throughput sequencing. PLoS One 13:e0190691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin A, Troadec C, Boualem A, Rajab M, Fernandez R, Morin H, Pitrat M, Dogimont C, Bendahmane A (2009) A transposon-induced epigenetic change leads to sex determination in melon. Nature 461:1135–1138

    Article  CAS  PubMed  Google Scholar 

  • McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res 40:4288–4297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Zhu JK (2008) Criteria for annotation of plant microRNAs. Plant Cell 20:3186–3190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ming R, Bendahmane A, Renner SS (2011) Sex chromosomes in land plants. Annu Rev Plant Biol 62:485–514

    Article  CAS  PubMed  Google Scholar 

  • Mirouze M, Lieberman-Lazarovich M, Aversano R, Bucher E, Nicolet J, Reinders J, Paszkowski J (2012) Loss of DNA methylation affects the recombination landscape in Arabidopsis. Proc Natl Acad Sci U S A 109:5880–5885

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra R, Mohanty JN, Chand SK, Joshi RK (2018) Can-miRn37a mediated suppression of ethylene response factors enhances the resistance of chilli anthracnose pathogen Colletotrichum truncatum L. Plant Sci 267:135–147

    Article  CAS  PubMed  Google Scholar 

  • Mohanty JN, Nayak S, Jha S, Joshi RK (2017) Transcriptome profiling of the floral buds and discovery of genes related to sex-differentiation in the dioecious cucurbit Coccinia grandis (L.) Voigt. Gene 626:395–406

    Article  CAS  PubMed  Google Scholar 

  • Murase K, Shigenobu S, Fujii S, Ueda K, Murata T, Sakamoto A, Ada Y, Yamaguchi K, Osakabe Y, Osakabe K, Kanno A, Ozaki Y, Takayama S (2016) MYB transcription factor gene involved in sex determination in Asparagus officinalis. Genes Cells 22(1):115–123

    Article  CAS  PubMed  Google Scholar 

  • Naqvi AR, Sarwat M, Hasan S, Roychodhury N (2012) Biogenesis, functions and fate of plant microRNAs. J Cell Physiol 227:3163–3168

    Article  CAS  PubMed  Google Scholar 

  • Nie S, Xu L, Wang Y, Huang D, Muleke EM, Sun X, Wang R, Xie Y, Gong Y, Liu L (2015) Identification of bolting-related microRNAs and their targets reveals complex miRNA-mediated flowering-time regulatory networks in radish (Raphanus sativus L.). Sci Rep 5:14034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parry G, Estelle M (2006) Auxin receptors: a new role for F-box proteins. Curr Opin Cell Biol 18:152–156

    Article  CAS  PubMed  Google Scholar 

  • Perry LM, Metzger J (1980) Medicinal plants of east and Southeast Asia 29: 218

  • Rhee SJ, Seo M, Jang YJ, Cho S, Lee GP (2015) Transcriptome profiling of differentially expressed genes in floral buds and flowers of male sterile and fertile lines in watermelon. BMC Genomics 16:914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubio-Somoza I, Weigel D (2011) MicroRNA networks and developmental plasticity in plants. Trends Plant Sci 16:258–264

    Article  CAS  PubMed  Google Scholar 

  • Rubio-Somoza I, Weigel D (2013) Coordination of flower maturation by a regulatory circuit of three microRNAs. PLoS Genet 9:e1003374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sattar S, Addo-Quaye C, Thompson GA (2016) miRNA-mediated auxin signalling repression during vat-mediated aphid resistance in Cucumis melo. Plant Cell Environ 39:1216–1227

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Ma K, Ci D, Chen Q, Tian J, Zhang D (2013a) Sexual dimorphic floral development in dioecious plants revealed by transcriptome, phytohormone, and DNA methylation analysis in Populus tomentosa. Plant Mol Biol 83:559–576

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Ma K, Ci D, Zhang Z, Zhang D (2013b) Sexual dimorphism floral microRNAs profiling and target gene expression in andromonoecious poplar (Populus tomentosa). PLoS One 8:e62681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song C, Zhang D, Zheng L, Zhang J, Zhang B, Luo W, Li Y, Li G, Ma J, Han M (2017) miRNA and degradome sequencing reveal miRNA and their target genes that may mediate shoot growth in spur type mutant “Yanfu 6”. Front Plant Sci 8:441

    PubMed  PubMed Central  Google Scholar 

  • Sousa A, Fuchs J, Renner SS (2013) Molecular cytogenetics (FISH, GISH) of Coccinia grandis: a ca. 3 myr-old species of cucurbitaceae with the largest Y/autosome divergence in flowering plants. Cytogenet. Genome Res 139:107–118

    Article  CAS  Google Scholar 

  • Sousa A, Bellot S, Fuchs J, Houben A, Renner SS (2016) Analysis of transposable elements and organellar DNA in male and female genomes of a species with a huge Y chromosome reveals distinct Y centromeres. Plant J 88:387–396

    Article  CAS  PubMed  Google Scholar 

  • Takatsuka H, Umeda M (2014) Hormonal control of cell division and elongation along differentiation trajectories in roots. J Exp Bot 65:2633–2643

    Article  CAS  PubMed  Google Scholar 

  • Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vyskot B, Araya A, Veuskens J, Negrutu I, Mouras A (1993) DNA methylation of sex chromosomes in a dioecious plant, Melandrium album. Mol Gen Genet 239:219–224

    CAS  PubMed  Google Scholar 

  • Wang ZJ, Huang JQ, Huang YJ, Li Z, Zheng BS (2012) Discovery and profiling of novel and conserved microRNAs during flower development in Carya cathayensis via deep sequencing. Planta 236:613–621

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi A, Abe M (2012) Regulation of reproductive development by non-coding RNA in Arabidopsis: to flower or not to flower. J Plant Res 125:693–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Li L (2011) miRDeep-P: a computational tool for analyzing the microRNAs transcriptome in plants. Bioinformatics 27:2614–2615

    Article  CAS  PubMed  Google Scholar 

  • Ye X, Song T, Liu C, Feng H, Liu Z (2014) Identification of fruit related microRNAs in cucumber (Cucumis sativus L.) using high-throughput sequencing technology. Hereditas 151:220–228

    Article  PubMed  Google Scholar 

  • Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:R14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Chen X (2014) Non-coding RNAs and DNA methylation in plants. Natl Sci Rev 1:219–229

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Helliwell CA (2011) Regulation of flowering time and floral patterning by miR172. J Exp Bot 62:487–495

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank DST-FIST, Govt. of India, for the research infrastructure facilities provided to Centre of Biotechnology, Siksha O Anusandhan University.

Funding

This research is supported by grants from Dept. of Biotechnology (DBT), Govt. of India (grant no. BT/PR3919/PBD/16/959/2011). JNM is supported by research fellowships from Dept. of Biotechnology (DBT), Govt. of India.

Author information

Authors and Affiliations

Authors

Contributions

RKJ conceived, designed, and supervised the research work. JNM performed the experiments and SKC analyzed the data. JNM and SKC wrote the manuscript. RKJ provided inputs on data presentation and critically reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Raj Kumar Joshi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Figure S1

Abundance of known (A) and novel (B) miRNA families identified from Coccinia grandis. (JPG 648 kb)

Figure S2

Gene ontology (GO) classification of the target genes for differentially expressed microRNAs. GO terms were assigned based on significant hits and classified into three main categories: Biological process, cellular component and molecular function. (JPG 215 kb)

Table S1

Primers and probes used in the present study. (DOCX 21 kb)

Table S2

Detailed information of conserved miRNAs isolated from Coccinia grandis. (XLSX 36 kb)

Table S3

Novel miRNAs identified from Coccinia grandis. (XLS 41 kb)

Table S4

Differentially expressed members of C. grandis miRNA families. (XLSX 15 kb)

Table S5

List of predicted target genes for the differentially expressed miRNAs. (XLSX 20 kb)

Table S6

Gene ontology (GO) based functional classification of conserved and novel miRNA targets with miRNA. (XLSX 12 kb)

Table S7

Functional classification of conserved and novel miRNA targets using Kyoto Enclycopedia of Genes and Genomes (KEGG) analysis. (XLSX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanty, J.N., Chand, S.K. & Joshi, R.K. Multiple microRNAs Regulate the Floral Development and Sex Differentiation in the Dioecious Cucurbit Coccinia grandis (L.) Voigt. Plant Mol Biol Rep 37, 111–128 (2019). https://doi.org/10.1007/s11105-019-01143-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-019-01143-8

Keywords

Navigation