Skip to main content

Advertisement

Log in

Intercropping wheat alleviated soil acidification and suppressed Fusarium wilt of faba bean

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Modern high input-based intensive cropping systems often lead to accumulation of phenolic acids in the soil which promote the development of soil diseases. While this can be suppressed by intercropping. This research assessed the impact of intercropping on Fusarium wilt from the perspective of soil acidification under cinnamic acid and Fusarium commune stress.

Methods

The treatments were not inoculated with F. commune, while the faba beans were inoculated with this pathogen. Infected plants were also treated with cinnamic acid. The development of wilt, together with seedling dry weight, soil chemical properties, soil enzymes, soil amino acids, microbial diversity, and the community structure and composition from monocropping and intercropping systems, were investigated.

Results

Under the combined stress of cinnamic acid and F. commune, relative to monocropping, intercropping with wheat increased the soil pH value, reduced most of the soil amino acid contents, increased bacterial community diversity, and modified the community structures and compositions of bacteria and fungi, increased the abundance of both Sphingomonas and radyrhizobium and reduced Fusarium and increased soil enzyme activities and nutrient; moreover, it promoted plant growth, and reduced the disease index.

Conclusion

Intercropping alleviated soil acidification and suppressed faba bean’s Fusarium wilt following F. commune infection and cinnamic acid stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data and materials generated or analyzed during this study have been included in this article.

References

  • Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision. Food and Agriculture Organization of The United Nations, Rome

    Google Scholar 

  • Ali A, Ghani MI, Haiyan D, Iqbal M, Cheng Z, Cai Z (2020) Garlic substrate induces cucumber growth development and decreases Fusarium wilt through regulation of soil microbial community structure and diversity in replanted disturbed soil. Int J Mol Sci 21:6008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74:19–31

    Article  Google Scholar 

  • Bai Y, Wang G, Cheng Y, Shi P, Yang C, Yang H, Xu Z (2019) Soil acidification in continuously cropped tobacco alters bacterial community structure and diversity via the accumulation of phenolic acids. Sci Rep 9:653–662

    Article  Google Scholar 

  • Bailey K, Lazarovits G (2003) Suppressing soil-borne diseases with residue management and organic amendments. Soil Tillage Res 72:169–180

    Article  Google Scholar 

  • Bainard LD, Koch AM, Gordon AM, Klironomos JN (2013) Growth response of crops to soil microbial communities from conventional monocropping and tree-based intercropping systems. Plant Soil 363:345–356

    Article  CAS  Google Scholar 

  • Blum U, Shafer SR (1988) Microbial populations and phenolic acids in soil. Soil Biol Biochem 20:793–800

    Article  CAS  Google Scholar 

  • Bokulich NA, Mills DA (2013) Improved selection of internal transcribed spacer-specific primers enables quantitative, ultra-high-throughput profiling of fungal communities. Appl Environ Microb 79:2519–2526

    Article  CAS  Google Scholar 

  • Bolwell G, Cramer C, Lamb C, Schuch W, Dixon R (1986) L-phenylalanine ammonia-lyase from Phaseolus Vulgaris: Modulation of the levels of active enzyme. Planta 169:97–107

    Article  CAS  PubMed  Google Scholar 

  • Bruggen AHC, Semenov AM (2000) In search of biological indicators for soil health and disease suppression. Appl Soil Ecol 15:13–24

    Article  Google Scholar 

  • Cha JY, Han S, Hong HJ, Cho HJ, Kim D, Kwon YH, Kwon SK, Crüsemann M, Bok Lee Y, Kim JF, Giaever G, Nislow C, Moore BS, Thomashow LS, Weller DM, Kwak YS (2016) Microbial and biochemical basis of a fusarium wilt-suppressive soil. ISME J 10:119–129

  • Chapon A, Guillerm AY, Delalande L, Lebreton L, Sarniguet A (2002) Dominant colonisation of wheat roots by Pseudomonas fluorescens Pf29A and selection of the indigenous microflora in the presence of the take-all fungus. Eur J Plant Pathol 108:449–459

    Article  CAS  Google Scholar 

  • Chen S, Ren J, Zhao H, Wang X, Wang T, Jin S, Li C, Liu A, Lin X, Ahammed G (2019) Trichoderma harzianum improves defense against Fusarium oxysporum by regulating ROS and RNS metabolism, redox balance and energy flow in cucumber roots. Phytopathology 109:972–982

    Article  CAS  PubMed  Google Scholar 

  • Colwell J (1963) The estimation of the phosphorus fertilizer requirements of wheat in southern New South Wales by soil analysis. Aust J Exp Agr 3:190–197

    Article  CAS  Google Scholar 

  • Davis A, Perkins-Veazie P, Sakata Y, López-Galarza S, Maroto J, Lee S, Huh Y, Sun Z, Miguel A, King S, Cohen R, Lee J (2008) Cucurbit grafting. Crit Rev Plant Sci 27:50–74

    Article  Google Scholar 

  • De Borba M, Garcés-Fiallos FR, Stadnik M (2017) Reactions of black bean seedlings and adult plants to infection by Fusarium oxysporum f. sp. phaseoli. Crop Prot 96:221–227

    Article  Google Scholar 

  • Dennis P, Miller AJ, Hirsch P (2010) Are root exudates more important than other sources of rhizodepos its in structuring rhizosphere bacterial communities? FEMS Microbiol Ecol 72:313–327

    Article  CAS  PubMed  Google Scholar 

  • Derakhshani H, Tun H, Khafipour E (2016) An extended single-index multiplexed 16S rRNA sequencing for microbial community analysis on MiSeq illumina platforms. J Basic Microb 56:321–326

    Article  CAS  Google Scholar 

  • Doornbos R, Van Loon L, Bakker P (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. a review. Agron Sustain Dev 32:227–243

    Article  Google Scholar 

  • Eisenhauer N, Beßler H, Engels C, Gleixner G, Habekost M, Milcu A, Partsch S, Sabais A, Scherber C, Steinbeiss S, Weigelt A, Weisser W, Scheu S (2010) Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology 91:485–496

    Article  CAS  PubMed  Google Scholar 

  • El Idrissi MM, Lamin H, Bouhnik O, Lamrabet M, Alami S, Jabrone Y, Bennis M, Bedmar E, Abdelmoumen H (2020) Characterization of Pisum sativum and Vicia faba microsymbionts in Morocco and definition of symbiovar viciae in Rhizobium acidisoli. Syst Appl Microbiol 43:126084

    Article  Google Scholar 

  • Fenoglio S, Gay P, Malacarne G, Cucco M (2006) Rapid recolonization of agricultural soil by microarthropods after steam disinfestation. J Sustain Agric 27:125–135

    Article  Google Scholar 

  • Gamliel A, Austerweil M, Kritzman G (2000) Non-chemical approach to soilborne pest management–organic amendments. Crop Prot 19:847–853

    Article  Google Scholar 

  • Gao X, Lu X, Wu M, Zhang H, Pan R, Tian J, Li SX, Liao H (2012) Co-inoculation with rhizobia and AMF inhibited soybean red crown rot: from field study to plant defense-related gene expression analysis. PLoS ONE 7:e33977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X, Wu M, Xu R, Wang X, Pan R, Kim HJ, Liao H (2014) Root interactions in a maize/soybean intercropping system control soybean soil-borne disease, red crown rot. PLoS ONE 9:e95031

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao Z, Han M, Hu Y, Li Z, Liu C, Wang X, Tian Q, Jiao W, Hu J, Liu L, Guan Z, Ma Z (2019) Effects of continuous cropping of sweet potato on the fungal community structure in rhizospheric soil. Front Microbiol 10:2269

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao L, Hill PW, Jones DL, Guo Y, Gao F, Cui X (2020) Seasonality is more important than forest type in regulating the pool size and composition of soil soluble N in temperate forests. Biogeochemistry 150:279–295

    Article  CAS  Google Scholar 

  • Glaze-Corcoran S, Hashemi M, Sadeghpour A, Jahanzad E, Afshar R, Liu X, Herbert S (2020) Understanding intercropping to improve agricultural resiliency and environmental sustainability. Adv Agron 162:199–256

    Article  Google Scholar 

  • Gordon TR (2017) Fusarium oxysporum and the Fusarium wilt syndrome. Annu Rev Phytopathol 55:23–39

    Article  CAS  PubMed  Google Scholar 

  • Grace J, Michael Anderson T, Smith MD, Seabloom E, Andelman S, Meche G, Weiher E, Allain L, Jutila H, Sankaran M, Knops J, Ritchie M, Willig MR (2007) Does species diversity limit productivity in natural grassland communities? Ecol Lett 10:680–689

    Article  PubMed  Google Scholar 

  • Griffiths BS, Ritz K, Wheatley R, Kuan HL, Boag B, Christensen S, Ekelund F, Sørensen SJ, Muller S, Bloem J (2001) An examination of the biodiversity-ecosystem function relationship in arable soil microbial communities. Soil Biol Biochem 33:1713–1722

    Article  CAS  Google Scholar 

  • Gu Y, Hou Y, Huang D, Hao Z, Wang X, Wei Z, Jousset A, Tan S, Xu D, Shen Q, Xu Y, Friman V (2017) Application of biochar reduces Ralstonia solanacearum infection via effects on pathogen chemotaxis, swarming motility, and root exudate adsorption. Plant Soil 415:269–281

    Article  CAS  Google Scholar 

  • Gu Y, Wang X, Yang T, Friman V, Geisen S, Wei Z, Xu Y, Jousset A, Shen Q (2020) Chemical structure predicts the effect of plant-derived low-molecular weight compounds on soil microbiome structure and pathogen suppression. Funct Ecol 34:2158–2169

    Article  Google Scholar 

  • Hao C, Dungait J, Wei X, Ge T, Kuzyakov Y, Cui Z, Tian J, Zhang F (2022) Maize root exudate composition alters rhizosphere bacterial community to control hotspots of hydrolase activity in response to nitrogen supply. Soil Biol Biochem 170:108717

    Article  CAS  Google Scholar 

  • He W, Zhang L, Yi S, Tang X, Yuan Q, Guo M, Wu A, Qu B, Li H, Liao YC (2017) An aldo-keto reductase is responsible for Fusarium toxin-degrading activity in a soil Sphingomonas strain. Sci Rep 7:9549

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu S, Chapin Iii FS, Firestone MK, Field CB, Chiariello NR (2001) Nitrogen limitation of microbial decomposition in a grassland under elevated CO2. Nature 409:188–191

    Article  CAS  PubMed  Google Scholar 

  • Huang LF, Song LX, Xia XJ, Mao WH, Shi K, Zhou YH, Yu JQ (2013) Plant-soil feedbacks and soil sickness: from mechanisms to application in agriculture. J Chem Ecol 39:232–242

    Article  CAS  PubMed  Google Scholar 

  • Jin X, Shi Y, Wu F, Pan K, Zhou X (2019) Intercropping of wheat changed cucumber rhizosphere bacterial community composition and inhibited cucumber Fusarium wilt disease. Sci Agr 77:e20190005

    Article  Google Scholar 

  • Jin X, Wu F, Zhou X (2020) Different toxic effects of ferulic and p-hydroxybenzoic acids on cucumber seedling growth were related to their different influences on rhizosphere microbial composition. Biol Fert Soils 56:125–136

    Article  CAS  Google Scholar 

  • Jones DL, Darrah PR (1994) Amino-acid influx at the soil-root interface of Zea mays L. and its implications in the rhizosphere. Plant Soil 163:1–12

    Article  CAS  Google Scholar 

  • Katan J (1987) Soil solarization. In: Chet I (ed) Innovative approaches to plant disease management. Wiley, New York, pp 77–105

    Google Scholar 

  • Katan J (2000) Physical and cultural methods for the management of soil-borne pathogens. Crop Prot 19:725–731

    Article  Google Scholar 

  • Kim BR, Shin J, Guevarra RB, Lee JH, Kim DW, Seol KH, Lee JH, Kim HB, Isaacson RE (2017) Deciphering diversity indices for a better understanding of microbial communities. J Microbiol Biotechnol 27:2089–2093

    Article  PubMed  Google Scholar 

  • Kolterman D, Truog E (1953) Determination of fixed soil potassium. Soil Sci Soc Am J 17:347–351

    Article  CAS  Google Scholar 

  • Li X, Mu Y, Cheng Y, Liu X, Nian H (2013) Effects of intercropping sugarcane and soybean on growth, rhizosphere soil microbes, nitrogen and phosphorus availability. Acta Physiol Plant 35:1113–1119

    Article  CAS  Google Scholar 

  • Li X, Ding C, Hua K, Zhang T, Zhang Y, Zhao L, Yang YR, Liu J, Wang X (2014a) Soil sickness of peanuts is attributable to modifications in soil microbes induced by peanut root exudates rather than to direct allelopathy. Soil Biol Biochem 78:149–159

    Article  CAS  Google Scholar 

  • Li X, Wang X, Dai C, Zhang T, Xie X, Ding C, Wang H (2014b) Effects of intercropping with Atractylodes lancea and application of bio-organic fertiliser on soil invertebrates, disease control and peanut productivity in continuous peanut cropping field in subtropical China. Agroforestry Syst 88:41–52

    Article  Google Scholar 

  • Li X, Lewis E, Liu Q, Li H, Bai C, Wang Y (2016) Effects of longterm continuous cropping on soil nematode community and soil condition associated with replant problem in strawberry habitat. Sci Rep 6:30466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Liu Y, Wang J, Liang Y, Zhang S, Xu C, Wei D (2017) Soil acidification aggravates the occurrence of bacterial wilt in south China. Front Microbiol 8:703

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, De Boer W, Ding C, Zhang T, Wang X (2018) Suppression of soil-borne Fusarium pathogens of peanut by intercropping with the medicinal herb Atractylodes lancea. Soil Biol Biochem 116:120–130

    Article  CAS  Google Scholar 

  • Li X, Wang Z, Bao X, Sun J, Yang S, Wang P, Wang C, Wu J, Liu X, Tian X, Wang Y, Li J, Wang Y, Xia H, Mei P, Wang X, Zhao J, Yu R, Zhang W, Che Z, Gui L, Callaway R, Tilman D, Li L (2021) Long-term increased grain yield and soil fertility from intercropping. Nat Sustain 4:943–950

    Article  Google Scholar 

  • Li X, Chen D, Carrión VJ, Revillini D, Yin S, Dong Y, Zhang T, Wang X, Delgado-Baquerizo M (2023) Acidification suppresses the natural capacity of soil microbiome to fight pathogenic Fusarium infections. Nat Commun 14:5090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Wan Y, Chen E, Huang M, Chen X, Ni H, He J (2023) Sphingomonas caeni sp. nov., a phenolic acid-degrading bacterium isolated from activated sludge. Anton Leeuw 116:687–695

    Article  CAS  Google Scholar 

  • Lv H, Cao H, Nawaz M, Sohail H, Huang Y, Cheng F, Kong Q, Bie Z (2018) Wheat intercropping enhances the resistance of watermelon to Fusarium wilt. Front Plant Sci 9:696

    Article  PubMed  PubMed Central  Google Scholar 

  • Lv JX, Dong Y, Dong K, Zhao Q, Yang ZX, Chen L (2020) Intercropping with wheat suppressed Fusarium wilt in faba bean and modulated the composition of root exudates. Plant Soil 448:153–164

    Article  CAS  Google Scholar 

  • Martyn RD (1996) Fusarium, wilt of watermelon. In: Zither TA, Hopkins DL, Thomas CA (eds) Compendium of Cucurbit diseases. The American Phytopathology Society, St. Paul, pp 13–14

    Google Scholar 

  • Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider J, Piceno Y, DeSantis T, Andersen G, Bakker P, Raaijmakers J (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Meng T, Wang Q, Abbasi P, Ma Y (2019) Deciphering differences in the chemical and microbial characteristics of healthy and Fusarium wilt-infected watermelon rhizosphere soils. Appl Microbiol Biotechnol 103:1497–1509

    Article  CAS  PubMed  Google Scholar 

  • Nannipieri P, Giagnoni L, Renella G, Puglisi E, Ceccanti B, Masciandaro G, Fornasier F, Moscatelli MC, Marinari S (2012) Soil enzymology: classical and molecular approaches. Biol Fert Soils 48:743–762

    Article  Google Scholar 

  • Page A, Miller R, Keeney D (1982) Methods of soil analysis, part 2: chemical and microbiological properties, 2nd edn. American Society of Agronomy and Soil Science Society of America, Wisconsin, pp 885–891

    Google Scholar 

  • Porter I, Brett R, Wiseman B (1999) Alternatives to methyl bromide: chemical fumigants or integrated pest management systems? Australas Plant Path 28:65–71

    Article  Google Scholar 

  • Prischl M, Hackl E, Pastar M, Pfeiffer S, Sessitsch A (2012) Genetically modified Bt maize lines containing cry3Bb1, cry1A105 or cry1Ab2 do not affect the structure and functioning of root-associated endophyte communities. Appl Soil Ecol 54:39–48

    Article  Google Scholar 

  • Raaijmakers J, Paulitz T, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2008) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    Article  Google Scholar 

  • Raaijmakers J, Mazzola M (2016) Soil immune responses. Science 352:1392–1393

  • Radhakrishnan R, Pae S, Shim K, Baek I (2013) Penicillium sp. mitigates Fusarium-induced biotic stress in sesame plants. Biotechnol Lett 35:1073–1078

    Article  CAS  PubMed  Google Scholar 

  • Rice EL (1984) Allelopathy, 2nd edn. Academic Press, Orlando, p 422

    Google Scholar 

  • Salvador V, Lima R, dos Santos W, Soares A, Böhm P, Marchiosi R, de Lourdes Lucio Ferrarese M, Ferrarese-Filho O (2013) Cinnamic acid increases lignin production and inhibits soybean root growth. PLoS ONE 8:e69105

  • Schollenberger C (1945) Determination of soil organic matter. Soil Sci 59:53–56

    Article  CAS  Google Scholar 

  • Sharma K, Chen W, Muehlbauer F (2005) Genetics of chickpea resistance to five races of Fusarium wilt and a concise set of race differentials for Fusarium oxysporum f. sp. ciceris. Plant Dis 89:385–390

    Article  PubMed  Google Scholar 

  • Shen G, Zhang S, Liu X, Jiang Q, Ding W (2018) Soil acidification amendments change the rhizosphere bacterial community of tobacco in a bacterial wilt affected field. Appl Microbiol Biotechnol 102:9781–9791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui I, Shaukat S (2002) Mixtures of plant disease suppressive bacteria enhance biological control of multiple tomato pathogens. Biol Fertil Soils 36:260–268

  • Silveira JAG, Melo ARB, Viégas RA, Oliveira JTA (2001) Salinity-induced effects on nitrogen assimilation related to growth in cowpea plants. Environ Exp Bot 46:171–179

    Article  CAS  Google Scholar 

  • Stoddard F, Nicholas A, Rubiales D, Thomas J, Villegas-Fernández A (2010) Integrated pest management in faba bean. Field Crops Res 115:308–318

    Article  Google Scholar 

  • Sweellum TA, Naguib DM (2023) Tomato potato onion intercropping induces tomato resistance against soil borne pathogen, Fusarium oxysporum through improvement soil enzymatic status, and the metabolic status of tomato root and shoot. J Plant Dis Protect 130:245–261

    Article  CAS  Google Scholar 

  • Tang L, Hamid Y, Chen Z, Lin Q, Shohag M, He Z, Yang X (2021a) A phytoremediation coupled with agro-production mode suppresses Fusarium wilt disease and alleviates cadmium phytotoxicity of cucumber (Cucumis sativus L.) in continuous cropping greenhouse soil. Chemosphere 270:128634

  • Tang X, Zhang Y, Jiang J, Meng X, Huang Z, Wu H, He L, Xiong F, Liu J, Zhong R, Han Z, Tang R (2021b) Sugarcane/peanut intercropping system improves physicochemical properties by changing N and P cycling and organic matter turnover in root zone soil. PeerJ 9:e10880

    Article  PubMed  PubMed Central  Google Scholar 

  • Thies JA (2021) Grafting for managing vegetable crop pests. Pest Manag Sci 77:4825–4835

    Article  CAS  PubMed  Google Scholar 

  • Tian G, Bi Y, Cheng J (2019a) High concentration of ferulic acid in rhizosphere soil accounts for the occurrence of Fusarium wilt during the seedling stages of strawberry plants. Physiol Mol Plant Pathol 108:101–435

    Article  Google Scholar 

  • Tian X, Wang C, Bao X, Wang P, Li X, Yang S, Ding G, Christie P, Li L (2019b) Crop diversity facilitates soil aggregation in relation to soil microbial community composition driven by intercropping. Plant Soil 436:173–192

  • Wei Z, Yang T, Friman VP, Xu Y, Shen Q, Jousset A (2015) Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat Commun 6:8413

    Article  CAS  PubMed  Google Scholar 

  • Weller D, Raaijmakers J, Gardener B, Thomashow L (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Hao Z, Sun Y, Guo L, Huang L, Zeng Y, Wang Y, Yang L, Chen B (2016) Comparison on the structure and function of the rhizosphere microbial community between healthy and root-rot Panax notoginseng. Appl Soil Ecol 107:99–107

    Article  Google Scholar 

  • Wu Z, Yang L, Wang R, Zhang Y, Shang Q, Wang L, Ren Q, Xie Z (2015) In vitro study of the growth, development and pathogenicity responses of Fusarium oxysporum to phthalic acid, an autotoxin from Lanzhou lily. World J Microbiol Biotechnol 31:1227–1234

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Wang Z, Wu F (2015) Companion cropping with wheat increases resistance to Fusarium wilt in watermelon and the roles of root exudates in watermelon root growth. Physiol Mol Plant Pathol 90:12–20

    Article  Google Scholar 

  • Yang W, Guo Y, Li Y, Zheng Y, Dong K, Dong Y (2022a) Cinnamic acid toxicity on the structural resistance and photosynthetic physiology of faba bean Promoted the occurrence of Fusarium Wilt of faba bean, which was alleviated through wheat and faba bean intercropping. Front Plant Sci 13:857780

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang W, Li Y, Zhao Q, Guo Y, Dong Y (2022b) Intercropping alleviated the phytotoxic effects of cinnamic acid on the root cell wall structural resistance of faba bean and reduced the occurrence of Fusarium wilt. Physiol Plantarum 174:e13827

    Article  CAS  Google Scholar 

  • Yang W, Guo Y, Li Y, Lv J, Dong Y (2023) Benzoic acid promotes Fusarium wilt incidence by enhancing susceptibility and reducing photosynthesis of faba bean. Ann Appl Biol: 1–12

  • Ye S, Zhou Y, Sun Y, Zou L, Yu J (2006) Cinnamic acid causes oxidative stress in cucumber roots, and promotes incidence of Fusarium wilt. Environ Exp Bot 56:255–262

    Article  CAS  Google Scholar 

  • Yu J, Ye S, Ming F (2003) Effects of root exudates and aqueous root exudates of cucumber (Cucumis sativus) and allelochemicals, on photosynthesis and antioxidant enzymes in cucumber. Biochem Syst Ecol 31:129–139

    Article  CAS  Google Scholar 

  • Yu H, Chen S, Zhang X, Zhou X, Wu F (2019) Rhizosphere bacterial community in watermelon-wheat intercropping was more stable than in watermelon monoculture system under Fusarium oxysporum f. sp. niveum invasion. Plant Soil 445:369–381

    Article  CAS  Google Scholar 

  • Yu R, Lambers H, Callaway R, Wright A, Li L (2021) Belowground facilitation and trait matching: two or three to tango? Trends Plant Sci 26:1227–1235

    Article  CAS  PubMed  Google Scholar 

  • Zeng J, Liu J, Lu C, Ou X, Luo K, Li C, He M, Zhang H, Yan H (2020) Intercropping with turmeric or ginger reduce the continuous cropping obstacles that affect Pogostemon cablin (patchouli). Front Microbiol 11:2526

    Article  Google Scholar 

  • Zhang Y, Ye C, Su Y, Peng W, Lu R, Liu Y, Huang H, He X, Yang M, Zhu S (2022) Soil Acidification caused by excessive application of nitrogen fertilizer aggravates soil-borne diseases: Evidence from literature review and field trials. Agr Ecosyst Environ 340:108176

    Article  CAS  Google Scholar 

  • Zhang Z, Yang W, Li Y, Zhao Q, Dong Y (2023) Wheat-faba bean intercropping can control Fusarium wilt in faba bean under F. commune and ferulic acid stress as revealed by histopathological analysis. Physiol Mol Plant Pathol 124:101–965

    Article  Google Scholar 

  • Zhang Y, Chen CX, Feng H, Wang X, Roessner U, Walker R, Cheng Z, An Y, Du B, Bai J (2020a) Transcriptome profiling combined with activities of antioxidant and soil enzymes reveals an ability of Pseudomonas sp. CFA to mitigate p-hydroxybenzoic and ferulic acid stresses in cucumber. Front Microbiol 11:522986

  • Zhang Z, Fan J, Wu J, Zhang L, Wang J, Zhang B, Wang-Pruski G (2020b) Alleviating effect of silicon on melon seed germination under autotoxicity stress. Ecotoxicol Environ Saf 188:109901

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Cheng Y, Ma Y, Chen C, Xu F, Dong X (2018) Role of phenolic acids from the rhizosphere soils of Panax notoginseng as a double-edge sword in the occurrence of root-rot disease. Molecules 23:819

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Wu F (2012) Dynamics of the diversity of fungal and Fusarium communities during continuous cropping of cucumber in the greenhouse. FEMS Microbiol Ecol 80:469–478

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Zhang J, Pan D, Ge X, Jin X, Chen S, Wu F (2018) p-Coumaric can alter the composition of cucumber rhizosphere microbial communities and induce negative plant-microbial interactions. Biol Fert Soils 54:363–372

    Article  CAS  Google Scholar 

  • Zhou Q, Chen J, Xing Y, Xie X, Wang L (2019) Influence of intercropping Chinese milk vetch on the soil microbial community in rhizosphere of rape. Plant Soil 440:85–96

    Article  CAS  Google Scholar 

  • Zhou X, Zhang J, Khashi u Rahman M, Gao D, Wei Z, Wu F, and Dini-Andreote F (2023). Interspecific plant interaction via root exudates structures the disease suppressiveness of rhizosphere microbiomes. Mol Plant 16:849–864

Download references

Acknowledgements

We appreciated that this work was supported by the National Natural Science Foundation of China (32260802).

Author information

Authors and Affiliations

Authors

Contributions

Wenhao Yang conceived the original screening and research plans, designed the experiments and analyzed the data, finished writing this thesis. Yuting Guo and Dongsheng Wang assisted in data analysis to Wenhao Yang. Zhenyu Zhang provided technical assistance to Wenhao Yang. Yan Dong supervised the experiments, agreed to serve as the author responsible for contact and ensuring communication. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Yan Dong.

Ethics declarations

Competing interests

All co-authors have no conflicts of interest.

Additional information

Responsible Editor: Rui-Peng Yu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 241 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Guo, Y., Wang, D. et al. Intercropping wheat alleviated soil acidification and suppressed Fusarium wilt of faba bean. Plant Soil (2024). https://doi.org/10.1007/s11104-024-06680-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11104-024-06680-0

Keywords

Navigation