Skip to main content

Advertisement

Log in

Tree stem and soil methane and nitrous oxide fluxes, but not carbon dioxide fluxes, switch sign along a topographic gradient in a tropical forest

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Purpose

Tropical forests exchange large amounts of greenhouse gases (GHGs: carbon dioxide, CO2; methane, CH4; and nitrous oxide, N2O) with the atmosphere. Forest soils and stems can be either sources or sinks for CH4 and N2O, but little is known about what determines the sign and magnitude of these fluxes. Here, we aimed to study how stem and soil GHG fluxes vary along a topographic gradient in a tropical forest.

Methods

Fluxes of GHG from 56 individual tree stems and adjacent soils were measured with manual static chambers. The topographic gradient was characterized by a soil moisture gradient, with one end in a wetland area (“seasonally flooded”; SF), the other end in an upland area (“terra firme”; TF) and in between a transitional area on the slope (SL).

Results

Tree stems and soils were always sources of CO2 with higher fluxes in SF compared to TF and SL. Fluxes of CH4 and N2O were more variable, even within one habitat. Results showed that, in TF, soils acted as sinks for N2O whereas, in SF and SL, they acted as sources. In contrast, tree stems which were predominantly sources of N2O in SF and TF, were sinks in SL. In the soil, N2O fluxes were significantly influenced by both temperature and soil water content, whereas CH4 fluxes were only significantly correlated with soil water content.

Conclusion

SF areas were major sources of the three gases, whereas SL and TF soils and tree stems acted as either sources or sinks for CH4 and N2O. Our results indicate that tree stems represent overlooked sources of CH4 and N2O in tropical forests that need to be further studied to refine GHG budgets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguilos M, Stahl C, Burban B, Hérault B, Courtois E, Coste S et al (2019) Interannual and seasonal variations in ecosystem transpiration and water use efficiency in a tropical rainforest. Forests 10:14

    Article  Google Scholar 

  • Arias-Navarro C, Díaz-Pinés E, Klatt S, Brandt P, Rufino MC, Butterbach-Bahl K, Verchot LV (2017) Spatial variability of soil N2O and CO2 fluxes in different topographic positions in a tropical montane forest in Kenya. J Geophys Res: Biogeosci 122:514–527

    Article  CAS  Google Scholar 

  • Aubrey DP, Teskey RO (2021) Xylem transport of root-derived CO2 caused a substantial underestimation of belowground respiration during a growing season. Glob Chang Biol 27(12):2991–3000

    Article  CAS  PubMed  Google Scholar 

  • Auffret MD, Karhu K, Khachane A, Dungait JA, Fraser F, Hopkins DW et al (2016) The role of microbial community composition in controlling soil respiration responses to temperature. PLoS One 11:e0165448

    Article  PubMed  PubMed Central  Google Scholar 

  • Barba J, Curiel Yuste J, Poyatos R, Janssens IA, Lloret F (2016) Strong resilience of soil respiration components to drought-induced die-off resulting in forest secondary succession. Oecologia 182:27–41

    Article  PubMed  Google Scholar 

  • Barba J, Poyatos R, Vargas R (2019) Automated measurements of greenhouse gases fluxes from tree stems and soils: magnitudes, patterns and drivers. Sci Rep 9:1–13

    Article  CAS  Google Scholar 

  • Bonal D, Bosc A, Ponton S, Goret JY, Burban B, Gross P et al (2008) Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana. Glob Chang Biol 14:1917–1933

    Article  Google Scholar 

  • Bréchet L, Ponton S, Roy J, Freycon V, Coûteaux MM, Bonal D, Epron D (2009) Do tree species characteristics influence soil respiration in tropical forests? A test based on 16 tree species planted in monospecific plots. Plant Soil 319:235–246

    Article  Google Scholar 

  • Bréchet L, Ponton S, Alméras T, Bonal D, Epron D (2011) Does spatial distribution of tree size account for spatial variation in soil respiration in a tropical forest? Plant Soil 347:293–303

    Article  Google Scholar 

  • Bréchet LM, Daniel W, Stahl C, Burban B, Goret JY, Salomόn RL, Janssens IA (2021) Simultaneous tree stem and soil greenhouse gas (CO2, CH4, N2O) flux measurements: a novel design for continuous monitoring towards improving flux estimates and temporal resolution. New Phytol 230:2487–2500

    Article  PubMed  Google Scholar 

  • Butterbach-Bahl K, Kock M, Willibald G, Hewett B, Buhagiar S, Papen H, Kiese R (2004) Temporal variations of fluxes of NO, NO2, N2O, CO2, and CH4 in a tropical rain forest ecosystem. Global biogeochemical cycles

  • Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S (2013) Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos Trans R Soc B: Biol Sci 368:20130122

    Article  Google Scholar 

  • Carmichael MJ, Bernhardt ES, Bräuer SL, Smith WK (2014) The role of vegetation in methane flux to the atmosphere: should vegetation be included as a distinct category in the global methane budget? Biogeochemistry 119:1–24

    Article  CAS  Google Scholar 

  • Cavaleri MA, Oberbauer SF, Ryan MG (2006) Wood CO2 efflux in a primary tropical rain forest. Glob Chang Biol 12:2442–2458

    Article  Google Scholar 

  • Ceschia E, Damesin C, Lebaube S, Pontailler J-Y, Dufrene E (2002) Spatial and seasonal variations in stem respiration of beech trees (Fagus sylvatica). Ann For Sci 59:801–812

    Article  Google Scholar 

  • Chambers JQ, Tribuzy ES, Toledo LC, Crispim BF, Higuchi N, Santos JD et al (2004) Respiration from a tropical forest ecosystem: partitioning of sources and low carbon use efficiency. Ecol Appl 14:72–88

    Article  Google Scholar 

  • Courtois EA, Stahl C, Van den Berge J, Bréchet L, Van Langenhove L, Richter A, Urbina I, Soong JL, Penuelas J, Janssens IA (2018) Spatial variation of soil CO2, CH4 and N2O fluxes across topographic positions in tropical forests of the Guiana shield. Ecosystems 21:1445–1458

    Article  CAS  Google Scholar 

  • Covey KR, Megonigal JP (2019) Methane production and emissions in trees and forests. New Phytol 222:35–51

    Article  PubMed  Google Scholar 

  • Covey KR, Wood SA, Warren RJ, Lee X, Bradford MA (2012) Elevated methane concentrations in trees of an upland forest. Geophys Res Lett 39:1–6

    Article  Google Scholar 

  • Davidson EA, Keller M, Erickson HE, Verchot LV, Veldkamp E (2000) Testing a conceptual model of soil emissions of nitrous and nitric oxides: using two functions based on soil nitrogen availability and soil water content, the hole-in-the-pipe model characterizes a large fraction of the observed variation of nitric oxide and nitrous oxide emissions from soils. Bioscience 50:667–680

    Article  Google Scholar 

  • Davidson EA, de Carvalho CJR, Figueira AM, Ishida FY, Ometto JPH, Nardoto GB et al (2007) Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature 447:995–998

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Pinés E, Heras P, Gasche R, Rubio A, Rennenberg H, Butterbach-Bahl K, Kiese R (2016) Nitrous oxide emissions from stems of ash (Fraxinus angustifolia Vahl) and European beech (Fagus sylvatica L.). Plant Soil 398:35–45

    Article  Google Scholar 

  • Dutaur L, Verchot LV (2007) A global inventory of the soil CH4 sink. Global Biogeochemical Cycles 21(4)

  • Epron D, Bosc A, Bonal D, Freycon V (2006) Spatial variation of soil respiration across a topographic gradient in a tropical rain forest in French Guiana. J Trop Ecol 22:565–574

    Article  Google Scholar 

  • Epron D, Mochidome T, Tanabe T, Dannoura M, Sakabe A (2022) Variability in stem methane emissions and Wood methane production of tree different species in a cold Temperate Mountain Forest. Ecosystems:1–16

  • Fang HJ, Yu GR, Cheng SL, Mo JM, Yan JH, Li S (2009) 13C abundance, water-soluble and microbial biomass carbon as potential indicators of soil organic carbon dynamics in subtropical forests at different successional stages and subject to different nitrogen loads. Plant Soil 320:243–254

    Article  CAS  Google Scholar 

  • Feng H, Guo J, Ma X, Han M, Kneeshaw D, Sun H, Wang W (2021) Methane emissions may be driven by hydrogenotrophic methanogens inhabiting the stem tissues of poplar. New Phytologist 233(1):182–193

    Article  PubMed  Google Scholar 

  • Feng H, Guo J, Ma X, Han M, Kneeshaw D, Sun H et al (2022) Methane emissions may be driven by hydrogenotrophic methanogens inhabiting the stem tissues of poplar. New Phytol 233:182–193

    Article  CAS  PubMed  Google Scholar 

  • Ferry B, Morneau F, Bontemps JD, Blanc L, Freycon V (2010) Higher treefall rates on slopes and waterlogged soils result in lower stand biomass and productivity in a tropical rain forest. J Ecol 98:106–116

    Article  Google Scholar 

  • Fuss R (2020) Gasfluxes: greenhouse gas flux calculation from chamber measurements. R package version 0.4-4. Available online https://cran.r-project.org/web/packages/gasfluxes/gasfluxes.pdf. Accessed 8 Jul 2022

  • Gauci V, Figueiredo V, Gedney N, Pangala SR, Stauffer T, Weedon GP, Enrich-Prast A (2022) Non-flooded riparian Amazon trees are a regionally significant methane source. Phil Trans R Soc A 380:20200446

    Article  CAS  PubMed  Google Scholar 

  • Gourlet-Fleury S, Guehl JM, Laroussinie O. (2004). Ecology and management of a neotropical rainforest : lessons drawn from Paracou, a long-term experimental research site in French Guiana. Elsevier, Paris, 336 p. ISBN 2-84299-455-8

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilman B, Angert A (2016) Measuring the ratio of CO2 efflux to O2 influx in tree stem respiration. Tree Physiol 36:1422–1431

    CAS  PubMed  Google Scholar 

  • Janssens IA, Barigah ST, Ceulemans R (1998) Soil CO2 efflux rates in different tropical vegetation types in French Guiana. Ann Sci For 55:1–10

    Article  Google Scholar 

  • Jeffrey LC, Reithmaier G, Sippo JZ, Johnston SG, Tait DR, Harada Y, Maher DT (2019) Are methane emissions from mangrove stems a cryptic carbon loss pathway? Insights from a catastrophic forest mortality. New Phytol 224:146–154

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey LC, Maher DT, Tait DR, Euler S, Johnston SG (2020) Tree stem methane emissions from subtropical lowland forest (Melaleuca quinquenervia) regulated by local and seasonal hydrology. Biogeochemistry 151:273–290

    Article  CAS  Google Scholar 

  • Katayama A, Kume T, Komatsu H, Ohashi M, Matsumoto K, Ichihashi R, ..., Otsuki K (2014) Vertical variations in wood CO2 efflux for live emergent trees in a Bornean tropical rainforest. Tree Physiol 34: 503-512

  • Katayama A, Kume T, Ohashi M, Matsumoto K, Nakagawa M, Saito T et al (2016) Characteristics of wood CO2 efflux in a Bornean tropical rainforest. Agric For Meteorol 220:190–199

    Article  Google Scholar 

  • Katayama A, Endo I, Makita N, Matsumoto K, Kume T, Ohashi M (2021) Vertical variation in mass and CO2 efflux of litter from the ground to the 40m high canopy in a Bornean tropical rainforest. Agric For Meteorol 311:108659

    Article  Google Scholar 

  • Luizão RC, Luizão FJ, Paiva RQ, Monteiro TF, Sousa LS, Kruijt B (2004) Variation of carbon and nitrogen cycling processes along a topographic gradient in a central Amazonian forest. Glob Chang Biol 10:592–600

    Article  Google Scholar 

  • Machacova K, Papen H, Kreuzwieser J, Rennenberg H (2013) Inundation strongly stimulates nitrous oxide emissions from stems of the upland tree Fagus sylvatica and the riparian tree Alnus glutinosa. Plant Soil 364:287–301

    Article  CAS  Google Scholar 

  • Machacova K, Bäck J, Vanhatalo A, Halmeenmäki E, Kolari P, Mammarella I et al (2016) Pinus sylvestris as a missing source of nitrous oxide and methane in boreal forest. Sci Rep 6:1–8

    Article  Google Scholar 

  • Machacova K, Vainio E, Urban O, Pihlatie M (2019) Seasonal dynamics of stem N2O exchange follow the physiological activity of boreal trees. Nat Commun 10:1–13

    Article  CAS  Google Scholar 

  • Machacova K, Borak L, Agyei T, Schindler T, Soosaar K, Mander Ü, Ah-Peng C (2021) Trees as net sinks for methane (CH4) and nitrous oxide (N2O) in the lowland tropical rain forest on volcanic Réunion Island. New Phytol 229:1983–1994

    Article  CAS  PubMed  Google Scholar 

  • Machacova K, Borak L, Agyei T, Schindler T, Soosaar K, Mander Ü, Ah-Peng C (2020) Trees as net sinks for methane (CH4) and nitrous oxide (N2O) in the lowland tropical rain forest on volcanic Réunion Island. New Phytologist 229(4):1983–1994

    Article  PubMed  Google Scholar 

  • Maier CA (2001) Stem growth and respiration in loblolly pine plantations differing in soil resource availability. Tree Physiol 21:1183–1193

    Article  CAS  PubMed  Google Scholar 

  • Maier M, Machacova K, Lang F, Svobodova K, Urban O (2018) Combining soil and tree-stem flux measurements and soil gas profiles to understand CH4 pathways in Fagus sylvatica forests. J Plant Nutr Soil Sci 181:31–35

    Article  CAS  Google Scholar 

  • Megonigal JP, Guenther AB (2008) Methane emissions from upland forest soils and vegetation. Tree Physiol 28:491–498

    Article  CAS  PubMed  Google Scholar 

  • Mitchard ET (2018) The tropical forest carbon cycle and climate change. Nature 559:527–534

    Article  CAS  PubMed  Google Scholar 

  • Moldaschl E, Kitzler B, Machacova K, Schindler T, Schindlbacher A (2021) Stem CH4 and N2O fluxes of Fraxinus excelsior and Populus alba trees along a flooding gradient. Plant and Soil 461:407–420

    Article  CAS  Google Scholar 

  • Paine CET, Stahl C, Courtois EA, Patiño S, Sarmiento C, Baraloto C (2010) Functional explanations for variation in bark thickness in tropical rain forest trees. Funct Ecol 24:1202–1210

    Article  Google Scholar 

  • Pan Y, Birdsey R, Fang J, Houghton R, Kauppi PE, Kurz W, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire D, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993

    Article  CAS  PubMed  Google Scholar 

  • Pangala SR, Moore S, Hornibrook ER, Gauci V (2013) Trees are major conduits for methane egress from tropical forested wetlands. New Phytol 197:524–531

    Article  PubMed  Google Scholar 

  • Pangala SR, Enrich-Prast A, Basso LS, Peixoto RB, Bastviken D, Hornibrook ER et al (2017) Large emissions from floodplain trees close the Amazon methane budget. Nature 552:230–234

    Article  CAS  PubMed  Google Scholar 

  • Parkin TB, Venterea RT, Hargreaves SK (2012) Calculating the detection limits of chamber-based soil greenhouse gas flux measurements. J Environ Qual 41:705–715

    Article  CAS  PubMed  Google Scholar 

  • Pavelka M, Acosta M, Kiese R, Altimir N, Brümmer C, Crill P et al (2018) Standardisation of chamber technique for CO2, N2O and CH4 fluxes measurements from terrestrial ecosystems. Int Agrophysics 32:569–587

    Article  CAS  Google Scholar 

  • Pedersen AR, Petersen SO, Schelde K (2010) A comprehensive approach to soil-atmosphere trace-gas flux estimation with static chambers. Eur J Soil Sci 61:888–902

    Article  Google Scholar 

  • Phillips OL, Brienen RJ (2017) Carbon uptake by mature Amazon forests has mitigated Amazon nations’ carbon emissions. Carbon Bal Manag 12:1–9

    Article  Google Scholar 

  • Pitz S, Megonigal JP (2017) Temperate forest methane sink diminished by tree emissions. New Phytol 214:1432–1439

    Article  CAS  PubMed  Google Scholar 

  • Pitz SL, Megonigal JP, Chang CH, Szlavecz K (2018) Methane fluxes from tree stems and soils along a habitat gradient. Biogeochemistry 137:307–320

    Article  CAS  Google Scholar 

  • Plain C, Ndiaye FK, Bonnaud P, Ranger J, Epron D (2019) Impact of vegetation on the methane budget of a temperate forest. New Phytol 221:1447–1456

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Robertson AL, Malhi Y, Farfan-Amezquita F, Aragao LEOC, Silva Espejo JE, Robertson MA (2010) Stem respiration in tropical forests along an elevation gradient in the Amazon and Andes. Glob Chang Biol 16:3193–3204

    Article  Google Scholar 

  • Roland M, Serrano-Ortiz P, Kowalski AS, Goddéris Y, Sánchez-Cañete EP, Ciais P et al (2013) Atmospheric turbulence triggers pronounced diel pattern in karst carbonate geochemistry. Biogeosciences 10:5009–5017

    Article  Google Scholar 

  • Rowland L, Hill TC, Stahl C, Siebicke L, Burban B, Zaragoza-Castells J et al (2014) Evidence for strong seasonality in the carbon storage and carbon use efficiency of an Amazonian forest. Glob Chang Biol 20:979–991

    Article  PubMed  PubMed Central  Google Scholar 

  • Rowland L, da Costa AC, Oliveira AA, Oliveira RS, Bittencourt PL, Costa PB et al (2018) Drought stress and tree size determine stem CO2 efflux in a tropical forest. New Phytol 218:1393–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan MG (1990) Growth and maintenance respiration in stems of Pinus contorta and Picea engelmannii. Can J For Res 20:48–57

    Article  Google Scholar 

  • Ryan MG, Waring RH (1992) Maintenance respiration and stand development in a subalpine lodgepole pine forest. Ecology 73:2100–2108

    Article  Google Scholar 

  • Salomón RL, De Roo L, Bodé S, Boeckx P, Steppe K (2021) Efflux and assimilation of xylem-transported CO2 in stems and leaves of tree species with different wood anatomy. Plant Cell Environ 44:3494–3508

    Article  PubMed  Google Scholar 

  • Salomón RL, De Roo L, Oleksyn J, Steppe K (2022) Mechanistic drivers of stem respiration: a modelling exercise across species and seasons. Plant Cell Environ 45:1270–1285

    Article  PubMed  Google Scholar 

  • Sancho-Knapik D, Mendoza-Herrer Ó, Alonso-Forn D, Saz MÁ, Martín-Sánchez R, dos Santos Silva JV et al (2022) Vapor pressure deficit constrains transpiration and photosynthesis in holm oak: a comparison of three methods during summer drought. Agric For Meteorol 327:109218

    Article  Google Scholar 

  • Saunois M, Stavert AR, Poulter B, Bousquet P, Canadell JG, Jackson RB et al (2020) The global methane budget 2000–2017. Earth Syst Sci Data 12:1561–1623

    Article  Google Scholar 

  • Saveyn A, Steppe K, McGuire MA, Lemeur R, Teskey RO (2008) Stem respiration and carbon dioxide efflux of young Populus deltoides trees in relation to temperature and xylem carbon dioxide concentration. Oecologia 154:637–649

    Article  PubMed  Google Scholar 

  • Schindler T, Mander Ü, Machacova K, Espenberg M, Krasnov D, Escuer-Gatius J et al (2020) Short-term flooding increases CH4 and N2O emissions from trees in a riparian forest soil-stem continuum. Sci Rep 10:1–10

    Article  Google Scholar 

  • Sjögersten S, Siegenthaler A, Lopez OR, Aplin P, Turner B, Gauci V (2020) Methane emissions from tree stems in neotropical peatlands. New Phytol 225:769–781

    Article  PubMed  Google Scholar 

  • Smith KA, Ball T, Conen F, Dobbie KE, Massheder J, Rey A (2003) Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. Eur J Soil Sci 54:779–791

    Article  Google Scholar 

  • Soong JL, Fuchslueger L, Marañon-Jimenez S, Torn MS, Janssens IA, Penuelas J, Richter A (2020) Microbial carbon limitation: the need for integrating microorganisms into our understanding of ecosystem carbon cycling. Glob Chang Biol 26:1953–1961

    Article  PubMed  Google Scholar 

  • Sorz J, Hietz P (2006) Gas diffusion through wood: implications for oxygen supply. Trees 20:34–41

    Article  Google Scholar 

  • Stahl C, Burban B, Goret JY, Bonal D (2011) Seasonal variations in stem CO2 efflux in the Neotropical rainforest of French Guiana. Ann For Sci 68:771–782

    Article  Google Scholar 

  • Terazawa K, Yamada K, Ohno Y, Sakata T, Ishizuka S (2015) Spatial and temporal variability in methane emissions from tree stems of Fraxinus mandshurica in a cool-temperate floodplain forest. Biogeochemistry 123:349–362

    Article  CAS  Google Scholar 

  • Teskey RO, Saveyn A, Steppe K, McGuire MA (2008) Origin, fate and significance of CO2 in tree stems. New Phytol 177:17–32

    Article  CAS  PubMed  Google Scholar 

  • Teskey RO, McGuire MA, Bloemen J, Aubrey DP, Steppe K (2017) Respiration and CO2 fluxes in trees. Plant respiration: Metabolic fluxes and carbon balance, 181-207

  • Townsend AR, Asner GP, Cleveland CC (2008) The biogeochemical heterogeneity of tropical forests. Trends Ecol Evol 23:424–431

    Article  PubMed  Google Scholar 

  • Trumbore SE, Angert A, Kunert N, Muhr J, Chambers JQ (2013) What's the flux? Unraveling how CO2 fluxes from trees reflect underlying physiological processes. New Phytol 197:353–355

    Article  CAS  PubMed  Google Scholar 

  • Van Langenhove L, Verryckt LT, Stahl C, Courtois EA, Urbina I, Grau O et al (2021) Soil nutrient variation along a shallow catena in Paracou, French Guiana. Soil Res 59:130–145

    Article  Google Scholar 

  • Wang ZP, Gu Q, Deng FD, Huang JH, Megonigal JP, Yu Q, ..., Han XG (2016) Methane emissions from the trunks of living trees on upland soils. New Phytol 211: 429-439

  • Warner DL, Villarreal S, McWilliams K, Inamdar S, Vargas R (2017) Carbon dioxide and methane fluxes from tree stems, coarse woody debris, and soils in an upland temperate forest. Ecosystems 20:1205–1216

    Article  CAS  Google Scholar 

  • Welch BWC (2018) Trace Greenhouse Gas Fluxes in Upland Forests. Doctoral dissertation, Open University (United Kingdom)

  • Welch B, Gauci V, Sayer EJ (2019) Tree stem bases are sources of CH4 and N2O in a tropical forest on upland soil during the dry to wet season transition. Glob Chang Biol 25:361–372

    Article  PubMed  Google Scholar 

  • Wen Y, Corre MD, Rachow C, Chen L, Veldkamp E (2017) Nitrous oxide emissions from stems of alder, beech and spruce in a temperate forest. Plant Soil 420:423–434

    Article  CAS  Google Scholar 

  • Westerband AC, Wright IJ, Eller AS, Cernusak LA, Reich PB, Perez-Priego O et al (2022) Nitrogen concentration and physical properties are key drivers of woody tissue respiration. Ann Bot 129:633–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitaker J, Ostle N, Nottingham AT, Ccahuana A, Salinas N, Bardgett RD et al (2014) Microbial community composition explains soil respiration responses to changing carbon inputs along an Andes-to-Amazon elevation gradient. J Ecol 102:1058–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf K, Flessa H, Veldkamp E (2012) Atmospheric methane uptake by tropical montane forest soils and the contribution of organic layers. Biogeochemistry 111:469–483

    Article  CAS  Google Scholar 

  • Yip DZ, Veach AM, Yang ZK, Cregger MA, Schadt CW (2019) Methanogenic Archaea dominate mature heartwood habitats of Eastern Cottonwood (Populus deltoides). New Phytol 222:115–121

    Article  CAS  PubMed  Google Scholar 

  • Zhao K, Zheng M, Fahey TJ, Jia Z, Ma L (2018) Vertical gradients and seasonal variations in the stem CO2 efflux of Larix principis-rupprechtii Mayr. Agricultural and Forest Meteorology 262:71–80

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Research Council Synergy grant ERC-2013-SyG-610028-IMBALANCE-P, the European Commission through a Marie Skodowska-Curie Individual Fellowship H2020-MSCA-IF-2017-796438 to LMB, the Research Fund of the University of Antwerp and an “Investissement d’Avenir” grant delivered by the Agence Nationale de la Recherche (CEBA; ANR-10-LABX-25-01). We thank CIRAD - UMR EcoFoG for hosting our fieldwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warren Daniel.

Additional information

Responsible Editor: Paul Bodelier.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 626 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daniel, W., Stahl, C., Burban, B. et al. Tree stem and soil methane and nitrous oxide fluxes, but not carbon dioxide fluxes, switch sign along a topographic gradient in a tropical forest. Plant Soil 488, 533–549 (2023). https://doi.org/10.1007/s11104-023-05991-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-023-05991-y

Keywords

Navigation