Skip to main content
Log in

Drought and interspecific competition increase belowground carbon allocation for nitrogen acquisition in monocultures and mixtures of Trifolium repens and Lolium perenne

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Purpose

Belowground carbon (C) allocation for nitrogen (N) acquisition plays a crucial role in determining primary productivity and plant competitiveness in legume-grass mixtures, but beyond modeling and qualitative assessments, this remains poorly understood, especially with regard to drought stress and interspecific interactions.

Methods

We grew a legume (Trifolium repens) and a grass (Lolium perenne) in monocultures and as a 50:50 mixture (with same plant density), at 70% and 50% soil water holding capacity representing non-drought and drought conditions, for 104 days in a growth chamber experiment. By using continuous 13CO2 labelling and 15N pulse soil-labelling, we analyzed how drought and interspecific interaction affected belowground C allocation (including root biomass, root respiration and rhizodeposition) and N acquisition through soil N uptake and biological N fixation.

Results

Drought increased belowground C allocation per unit of N acquisition in the legume, but not in the grass. Drought significantly reduced biological N fixation in the legume, so that the legume allocated relatively more C to take up soil N. Interspecific competition increased belowground C allocation per unit of N acquisition, which could be attributed to a reduction in biological N fixation by the legume and an increased abundance of the grass.

Conclusions

We highlight that drought and interspecific competition for N strongly alter C allocation towards biological N fixation and soil N uptake. Our measurements provide important process-based information to improve modeling drought effects on productivity and composition in legume-grass mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study will be made available from Dryad Digital Repository.

References

  • Adams MA, Buchmann N, Sprent J, Buckley TN, Turnbull TL (2018) Crops, nitrogen, water: are legumes friend, foe, or misunderstood ally? Trends Plant Sci 23:539–550

    Article  CAS  Google Scholar 

  • Almagro M, Jorge L, Boix-Fayos C, Albaladejo J, Martínez-Mena M (2010) Belowground carbon allocation patterns in a dry Mediterranean ecosystem: a comparison of two models. Soil Biol Biochem 42:1549–1557

    Article  CAS  Google Scholar 

  • Arndal MF, Schmidt IK, Kongstad J, Beier C, Michelsen A (2014) Root growth and N dynamics in response to multi-year experimental warming, summer drought and elevated CO2 in a mixed heathland-grass ecosystem. Funct Plant Biol 41:1–10

    Article  CAS  Google Scholar 

  • Bahn M, Knapp M, Garajova Z, Pfahringer N, Cernusca A (2006) Root respiration in temperate mountain grasslands differing in land use. Glob Change Biol 12:995–1006

    Article  Google Scholar 

  • Balogh J, Papp M, Pintér K, Fóti S, Posta K, Eugster W, Nagy Z (2016) Autotrophic component of soil respiration is repressed by drought more than the heterotrophic one in dry grasslands. Biogeosciences 13:5171–5182

    Article  Google Scholar 

  • Canarini A, Dijkstra FA (2015) Dry-rewetting cycles regulate wheat carbon rhizodeposition, stabilization and nitrogen cycling. Soil Biol Biochem 81:195–203

    Article  CAS  Google Scholar 

  • Chomel M, Lavallee J, Alvarez-Segura N, de Castro F, Rhymes J, Caruso T, Vries F, Baggs E, Emmerson M, Bardgett R, Johnson D (2019) Drought decreases incorporation of recent plant photosynthate into soil food webs regardless of their trophic complexity. Glob Change Biol 25:3549–3561

    Article  Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G et al (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533

    Article  CAS  Google Scholar 

  • Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G (2013) Long-term climate change: projections, commitments and irreversibility. Climate Change 2013-The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press

  • Craine JM, Ocheltree TW, Nippert JB, Towne EG, Skibbe AM, Kembel SW, Fargione JE (2013) Global diversity of drought tolerance and grassland climate-change resilience. Nat Clim Chang 3:63–67

    Article  Google Scholar 

  • Daryanto S, Wang L, Jacinthe P-A (2017) Global synthesis of drought effects on cereal, legume, tuber and root crops production: a review. Agric Water Manag 179:18–33

    Article  Google Scholar 

  • de Vries FT, Brown C, Stevens CJ (2016) Grassland species root response to drought: consequences for soil carbon and nitrogen availability. Plant Soil 409:297–312

    Article  Google Scholar 

  • Deng L, Peng C, Kim D-G, Li J, Liu Y, Hai X, Liu Q, Huang C, Shangguan Z, Kuzyakov Y (2021) Drought effects on soil carbon and nitrogen dynamics in global natural ecosystems. Earth-Sci Rev 214:103501

    Article  CAS  Google Scholar 

  • Dijkstra FA, Cheng W (2007) Interactions between soil and tree roots accelerate long-term soil carbon decomposition. Ecol Lett 10:1046–1053

    Article  Google Scholar 

  • Dijkstra FA, Bader NE, Johnson DW, Cheng W (2009) Does accelerated soil organic matter decomposition in the presence of plants increase plant N availability? Soil Biol Biochem 41:1080–1087

    Article  CAS  Google Scholar 

  • Dijkstra FA, Morgan JA, Blumenthal D, Follett RF (2010) Water limitation and plant inter-specific competition reduce rhizosphere-induced C decomposition and plant N uptake. Soil Biol Biochem 42:1073–1082

    Article  CAS  Google Scholar 

  • Divito GA, Sadras VO (2014) How do phosphorus, potassium and Sulphur affect plant growth and biological nitrogen fixation in crop and pasture legumes? A meta-analysis. Field Crops Res 156:161–171

    Article  Google Scholar 

  • Dovrat G, Sheffer E (2019) Symbiotic dinitrogen fixation is seasonal and strongly regulated in water-limited environments. New Phytol 221:1866–1877

    Article  CAS  Google Scholar 

  • Evans PS (1977) Comparative root morphology of some pasture grasses and clovers. N Z J Agric Res 20:331–335

    Article  Google Scholar 

  • Eziz A, Yan Z, Tian D, Han W, Tang Z, Fang J (2017) Drought effect on plant biomass allocation: a meta-analysis. Ecol and Evol 7:11002–11010

    Article  Google Scholar 

  • Fay PA, Prober SM, Harpole WS, Knops JMH, Bakker JD, Borer ET, Lind EM, MacDougall AS, Seabloom EW, Wragg PD, Adler PB, Blumenthal DM, Buckley YM, Chu C, Cleland EE, Collins SL, Davies KF, Du G, Feng X et al (2015) Grassland productivity limited by multiple nutrients. Nature Plants 1:15080

    Article  CAS  Google Scholar 

  • Fisher J, Sitch S, Malhi Y, Fisher R, Huntingford C, Tan SY (2010) Carbon cost of plant nitrogen acquisition: a mechanistic, globally applicable model of plant nitrogen uptake, retranslocation, and fixation. Glob Biogeochem Cycles 24:1–17

    Article  Google Scholar 

  • Fornara D, Tilman D (2008) Plant functional composition influences rates of soil carbon and nitrogen accumulation. J Ecol 96:314–322

    Article  CAS  Google Scholar 

  • Fuchslueger L, Bahn M, Fritz K, Hasibeder R, Richter A (2014) Experimental drought reduces the transfer of recently fixed plant carbon to soil microbes and alters the bacterial community composition in a mountain meadow. New Phytol 201:916–927

    Article  CAS  Google Scholar 

  • Gill AL, Finzi AC (2016) Belowground carbon flux links biogeochemical cycles and resource-use efficiency at the global scale. Ecol Lett 19:1419–1428

    Article  Google Scholar 

  • Goh K, Bruce G (2005) Comparison of biomass production and biological nitrogen fixation of multi-species pastures (mixed herb leys) with perennial ryegrass-white clover pasture with and without irrigation in Canterbury, New Zealand. Agric Ecosyst Environ 110:230–240

    Article  Google Scholar 

  • Gomez-Casanovas N, Matamala R, Cook DR, Gonzalez-Meler MA (2012) Net ecosystem exchange modifies the relationship between the autotrophic and heterotrophic components of soil respiration with abiotic factors in prairie grasslands. Glob Change Biol 18:2532–2545

    Article  Google Scholar 

  • Hasibeder R, Fuchslueger L, Richter A, Bahn M (2015) Summer drought alters carbon allocation to roots and root respiration in mountain grassland. New Phytol 205:1117–1127

    Article  CAS  Google Scholar 

  • Hazard C, Gosling P, Van Der Gast CJ, Mitchell DT, Doohan FM, Bending GD (2013) The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale. The ISME J 7:498–508

    Article  CAS  Google Scholar 

  • Holz M, Zarebanadkouki M, Kaestner A, Kuzyakov Y, Carminati A (2018) Rhizodeposition under drought is controlled by root growth rate and rhizosphere water content. Plant Soil 423:429–442

    Article  CAS  Google Scholar 

  • Isbell R (2016) The Australian soil classification. CSIRO publishing

    Book  Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480

    Article  CAS  Google Scholar 

  • Karlowsky S, Augusti A, Ingrisch J, Akanda MKU, Bahn M, Gleixner G (2018) Drought-induced accumulation of root exudates supports post-drought recovery of microbes in mountain grassland. Front Plant Sci 9:1593

    Article  Google Scholar 

  • Keller A, Phillips R (2019) Relationship between belowground carbon allocation and nitrogen uptake in saplings varies by plant mycorrhizal type. Front For Glob Change 2:81

    Article  Google Scholar 

  • Klumpp K, SchÄUfele R, LÖTscher M, Lattanzi F, Feneis W, Schnyder H (2005) C-isotope composition of CO2 respired by shoots and roots: fractionation during dark respiration? Plant Cell Environ 28:241–250

    Article  CAS  Google Scholar 

  • Lambers H, Chapin FS, Pons TL (2008) Plant physiological ecology. Springer

    Book  Google Scholar 

  • LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379

    Article  Google Scholar 

  • Ledgard S, Steele K (1992) Biological nitrogen fixation in mixed legume/grass pastures. Plant Soil 141:137–153

    Article  CAS  Google Scholar 

  • Ledgard SF, Sprosen MS, Penno JW, Rajendram GS (2001) Nitrogen fixation by white clover in pastures grazed by dairy cows: temporal variation and effects of nitrogen fertilization. Plant Soil 229:177–187

    Article  CAS  Google Scholar 

  • Louarn G, Pereira-Lopès E, Fustec J, Mary B, Voisin A-S, de Faccio Carvalho PC, Gastal F (2015) The amounts and dynamics of nitrogen transfer to grasses differ in alfalfa and white clover-based grass-legume mixtures as a result of rooting strategies and rhizodeposit quality. Plant Soil 389:289–305

    Article  CAS  Google Scholar 

  • Luo Y, Su B, Currie WS, Dukes JS, Finzi A, Hartwig U, Hungate B, McMurtrie RE, Oren R, Parton WJ (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54:731–739

    Article  Google Scholar 

  • Mariotte P, Cresswell T, Johansen MP, Harrison JJ, Keitel C, Dijkstra FA (2020) Plant uptake of nitrogen and phosphorus among grassland species affected by drought along a soil available phosphorus gradient. Plant Soil:1–12

  • Mehnaz K, Dijkstra F (2016) Denitrification and associated N2O emissions are limited by phosphorus availability in a grassland soil. Geoderma 284:34–41

    Article  CAS  Google Scholar 

  • Mehnaz K, Keitel C, Dijkstra FA (2019) Phosphorus availability and plants alter soil nitrogen retention and loss. Sci Tot Environ 671:786–794

    Article  CAS  Google Scholar 

  • Meisser M, Vitra A, Deléglise C, Dubois S, Probo M, Mosimann E, Buttler A, Mariotte P (2019) Nutrient limitations induced by drought affect forage N and P differently in two permanent grasslands. Agric Ecosyst Environ 280:85–94

    Article  CAS  Google Scholar 

  • Mia S, Singh B, Dijkstra FA (2017) Aged biochar affects gross nitrogen mineralization and recovery: a 15N study in two contrasting soils. GCB Bioenergy 9:1196–1206

    Article  CAS  Google Scholar 

  • Mia S, Dijkstra FA, Singh B (2018) Enhanced biological nitrogen fixation and competitive advantage of legumes in mixed pastures diminish with biochar aging. Plant Soil 424:639–651

    Article  CAS  Google Scholar 

  • Minucci JM, Miniat CF, Teskey RO, Wurzburger N (2017) Tolerance or avoidance: drought frequency determines the response of an N2-fixing tree. New Phytol 215:434–442

    Article  CAS  Google Scholar 

  • Moinet GYK, Midwood AJ, Hunt JE, Rumpel C, Millard P, Chabbi A (2019) Grassland management influences the response of soil respiration to drought. Agronomy 9:124

    Article  CAS  Google Scholar 

  • Mouradi M, Farissi M, Bouizgaren A, Makoudi B, Kabbadj A, Very A-A, Sentenac H, Qaddourya A, Ghoulam C (2016) Effects of water deficit on growth, nodulation and physiological and biochemical processes in Medicago sativa-rhizobia symbiotic association. Arid Land Res Manage 30:193–208

    Article  CAS  Google Scholar 

  • Naya L, Ladrera R, Ramos J, González EM, Arrese-Igor C, Minchin FR, Becana M (2007) The response of carbon metabolism and antioxidant defenses of alfalfa nodules to drought stress and to the subsequent recovery of plants. Plant Physiol 144:1104–1114

    Article  CAS  Google Scholar 

  • Nyfeler D, Huguenin-Elie O, Suter M, Frossard E, Lüscher A (2011) Grass–legume mixtures can yield more nitrogen than legume pure stands due to mutual stimulation of nitrogen uptake from symbiotic and non-symbiotic sources. Agric Ecosyst Environ 140:155–163

    Article  Google Scholar 

  • Palmborg C, Scherer-Lorenzen M, Jumpponen A, Carlsson G, Huss-Danell K, Högberg P (2005) Inorganic soil nitrogen under grassland plant communities of different species composition and diversity. Oikos 110:271–282

    Article  CAS  Google Scholar 

  • Parvin S, Uddin S, Tausz-Posch S, Armstrong R, Tausz M (2020) Carbon sink strength of nodules but not other organs modulates photosynthesis of faba bean (Vicia faba) grown under elevated CO2 and different water supply. New Phytol 227:132–145

    Article  CAS  Google Scholar 

  • Pataki D, Ehleringer J, Flanagan L, Yakir D, Bowling D, Still C, Buchmann N, Kaplan JO, Berry J (2003) The application and interpretation of Keeling plots in terrestrial carbon cycle research. Glob Biogeochem Cycles 17(1):1022

    Article  Google Scholar 

  • Pausch J, Kuzyakov Y (2018) Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale. Glob Change Biol 24:1–12

    Article  Google Scholar 

  • Peñuelas J, Prieto P, Beier C, Cesaraccio C, De Angelis P, De Dato G, Emmett BA, Estiarte M, Garadnai J, Gorissen A, LÁNg EK, KrÖEl-Dulay G, Llorens L, Pellizzaro G, Riis-Nielsen T, Schmidt IK, Sirca C, Sowerby A, Spano D, Tietema A (2007) Response of plant species richness and primary productivity in shrublands along a north–south gradient in Europe to seven years of experimental warming and drought: reductions in primary productivity in the heat and drought year of 2003. Glob Change Biol 13:2563–2581

    Article  Google Scholar 

  • Peterson PR, Sheaffer CC, Hall MH (1992) Drought effects on perennial forage legume yield and quality. Agron J 84:774–779

    Article  Google Scholar 

  • Pirhofer-Walzl K, Rasmussen J, Høgh-Jensen H, Eriksen J, Søegaard K, Rasmussen J (2012) Nitrogen transfer from forage legumes to nine neighbouring plants in a multi-species grassland. Plant Soil 350:71–84

    Article  CAS  Google Scholar 

  • Preece C, Peñuelas J (2016) Rhizodeposition under drought and consequences for soil communities and ecosystem resilience. Plant Soil 409:1–17

    Article  CAS  Google Scholar 

  • Sanaullah M, Chabbi A, Rumpel C, Kuzyakov Y (2012) Carbon allocation in grassland communities under drought stress followed by 14C pulse labeling. Soil Biol Biochem 55:132–139

    Article  CAS  Google Scholar 

  • Sardans J, Rivas-Ubach A, Peñuelas J (2012) The C: N: P stoichiometry of organisms and ecosystems in a changing world: a review and perspectives. Perspect Plant Ecol Evol Syst 14:33–47

    Article  Google Scholar 

  • Schmitt A, Pausch J, Kuzyakov Y (2013) Effect of clipping and shading on C allocation and fluxes in soil under ryegrass and alfalfa estimated by 14C labelling. Appl Soil Ecol 64:228–236

    Article  Google Scholar 

  • Schnyder H, Lattanzi F (2005) Partitioning respiration of C3-C4 mixed communities using the natural abundance 13C approach - testing assumptions in a controlled environment. Plant biology (Stuttgart, Germany) 7:592–600

    Article  CAS  Google Scholar 

  • Serraj R, Sinclair TR, Purcell LC (1999) Symbiotic N2 fixation response to drought. J Exp Bot 50:143–155

    CAS  Google Scholar 

  • Shi M, Fisher JB, Brzostek ER, Phillips RP (2016) Carbon cost of plant nitrogen acquisition: global carbon cycle impact from an improved plant nitrogen cycle in the community land model. Glob Change Biol 22:1299–1314

    Article  Google Scholar 

  • Soussana J-F, Lemaire G (2014) Coupling carbon and nitrogen cycles for environmentally sustainable intensification of grasslands and crop-livestock systems. Agric Ecosyst Environ 190:9–17

    Article  CAS  Google Scholar 

  • Suter M, Connolly J, Finn JA, Loges R, Kirwan L, Sebastià MT, Lüscher A (2015) Nitrogen yield advantage from grass–legume mixtures is robust over a wide range of legume proportions and environmental conditions. Glob Change Biol 21:2424–2438

    Article  Google Scholar 

  • Terrer C, Vicca S, Stocker BD, Hungate BA, Phillips RP, Reich PB, Finzi AC, Prentice IC (2018) Ecosystem responses to elevated CO2 governed by plant–soil interactions and the cost of nitrogen acquisition. New Phytol 217:507–522

    Article  CAS  Google Scholar 

  • Thornton PE, Lamarque JF, Rosenbloom NA, Mahowald NM (2007) Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Glob Biogeochem Cycles 21:GB4018

    Article  Google Scholar 

  • Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302

    Article  CAS  Google Scholar 

  • Tzanakakis V, Sturite I, Dörsch P (2017) Biological nitrogen fixation and transfer in a high latitude grass-clover grassland under different management practices. Plant Soil 421:107–122

    Article  CAS  Google Scholar 

  • Vitousek PM, Cassman K, Cleveland C, Crews T, Field CB, Grimm NB, Howarth RW, Marino R, Martinelli L, Rastetter EB (2002) Towards an ecological understanding of biological nitrogen fixation. The nitrogen cycle at regional to global scales. Springer

  • Wang X, Zhu B, Wang Y, Zheng X (2008) Field measures of the contribution of root respiration to soil respiration in an alder and cypress mixed plantation by two methods: trenching method and root biomass regression method. Eur J For Res 127:285–291

    Article  CAS  Google Scholar 

  • Wang Y, Hao Y, Cui XY, Zhao H, Xu C, Zhou X, Xu Z (2014) Responses of soil respiration and its components to drought stress. J Soils Sed 14:99–109

    Article  Google Scholar 

  • Wang R, Cavagnaro TR, Jiang Y, Keitel C, Dijkstra FA (2021a) Carbon allocation to the rhizosphere is affected by drought and nitrogen addition. J Ecol 109:3699–3709

    Article  CAS  Google Scholar 

  • Wang R, Bicharanloo B, Shirvan MB, Cavagnaro TR, Jiang Y, Keitel C, Dijkstra FA (2021b) A novel 13C pulse-labelling method to quantify the contribution of rhizodeposits to soil respiration in a grassland exposed to drought and nitrogen addition. New Phytol 230:857–866

    Article  CAS  Google Scholar 

  • Wegener F, Beyschlag W, Werner C (2010) The magnitude of diurnal variation in carbon isotopic composition of leaf dark respired CO2 correlates with the difference between δ13C of leaf and root material. Funct Plant Biol 37:849–858

    Article  CAS  Google Scholar 

  • Wei X, Reich PB, Hobbie SE (2019) Legumes regulate grassland soil N cycling and its response to variation in species diversity and N supply but not CO2. Glob Change Biol 25:2396–2409

    Article  Google Scholar 

  • Williams A, de Vries FT (2020) Plant root exudation under drought: implications for ecosystem functioning. New Phytol 225:1899–1905

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Sonam Tashi for isotopic analysis. This research was funded by the Australian Research Council (Grant no. DP190102262) and the National Natural Science Foundation of China (Grant no. 32001187).

Author information

Authors and Affiliations

Authors

Contributions

Chunlian Qiao and Feike A. Dijkstra designed the research and analysed data. Chunlian Qiao, Xiaoguang Wang and Milad Bagheri Shirvan established and performed the experiment. Chunlian Qiao, Claudia Keitel and Feike A. Dijkstra led the isotope measurements and data interpretation. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Chunlian Qiao.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Eric Paterson.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, C., Wang, X., Shirvan, M.B. et al. Drought and interspecific competition increase belowground carbon allocation for nitrogen acquisition in monocultures and mixtures of Trifolium repens and Lolium perenne. Plant Soil 481, 269–283 (2022). https://doi.org/10.1007/s11104-022-05636-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-022-05636-6

Keywords

Navigation