Skip to main content

Advertisement

Log in

Integrated study on subcellular localization and chemical speciation of Pb reveals root strategies for Pb sequestration and detoxification in Salix integra

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Salix integra has a high tolerance to lead (Pb) stress, and has been applied in the phytostabilization of Pb-Zn mine tailings in East China. Mechanisms for Pb sequestration and detoxification were poorly understood in Salix plants. The present study aimed to elucidate where Pb was localized and how Pb was combined in roots of S. integra for a better understanding of Pb tolerance strategies.

Methods

Histochemical methods combined with synchrotron-based X-ray fluorescence microscopy, transmission electron microscopy and fourier transform infrared spectroscopy were used to explore the distribution and chemical forms of Pb at cellular and subcellular levels in S. integra.

Results

The accumulation of Pb displayed a fast linear uptake in roots and stems in the short-term period, whereas a slower Freundlich-like uptake in leaves. Micro-XRF and histochemical staining revealed that the absorbed Pb in roots was mostly restricted in the cortex, and partly translocated in the stele. At the subcellular level, most Pb in roots was localized in the cell walls and trophoplast fraction, and the free -OH and pectin C—O/C—O—S groups may be involved in the cell wall sequestration. It was also found that the majority of Pb in roots existed as phosphate and oxalate.

Conclusions

S. integra has a high uptake potential of accumulating Pb in their roots. The absorbed Pb was primarily localized in the cell walls and combined with -OH or pectin groups, and precipitation as phosphate or oxalate may be responsible for the detoxification in root cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arias JA, Peralta-Videa JR, Ellzey JT, Ren M, Viveros MN, Gardea-Torresdey JL (2010) Effects of Glomus deserticola inoculation on Prosopis:enhancing chromium and lead uptake and translocation as confirmed by X-ray mapping, ICP-OES and TEM techniques. Environ Exp Bot 68(2):139–148

    Article  CAS  Google Scholar 

  • Cao Y, Ma C, Zhang J, Wang S, White JC, Chen G, Xing B (2019) Accumulation and spatial distribution of copper and nutrients in willow as affected by soil flooding: a synchrotron-based X-ray fluorescence study. Environ Pollut 246:980–989

    Article  CAS  PubMed  Google Scholar 

  • Chen GC, Liu YQ, Wang RM, Zhang JF, Owens G (2013) Cadmium adsorption by willow root: the role of cell walls and their subfractions. Environ Sci Pollut Res 20:5665–5672

    Article  CAS  Google Scholar 

  • Chudzik B, Szczuka E, Leszczuk A, Strubińska J (2018) Modification of pectin distribution in sunflower (Helianthus annuus L.) roots in response to lead exposure. Environ Exp Bot 155:251–259

  • Cotter-Howells J, Champness P, Charnock J (1999) Mineralogy of Pb-P grains in the roots of Agrostis capillaris L. by ATEM and EXAFS. Mineral Mag 63:777–789

    Article  CAS  Google Scholar 

  • Dos Santos Utmazian MN, Wieshammer G, Vega R, Wenzel WW (2007) Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Environ Pollut 148:155–165

    Article  PubMed  CAS  Google Scholar 

  • Fu X, Dou C, Chen Y, Chen X, Shi J, Yu M, Xu J (2011) Subcellular distribution and chemical forms of cadmium in Phytolacca americana L. J Hazard Mater 186(1):103–107

    Article  CAS  PubMed  Google Scholar 

  • Ginn BR, Szymanowski JS, Fein JB (2008) Metal and proton binding onto the roots of fescue rubra. Chem Geol 253(3–4):130–135

    Article  CAS  Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Applied Ecology & Environmental Research 3(1):1–18

    Article  Google Scholar 

  • Gupta DK, Huang HG, Corpas FJ (2013) Lead tolerance in plants: strategies for phytoremediation. Environ Sci Pollut Res 20:2150–2161

    Article  CAS  Google Scholar 

  • Gupta DK, Huang HG, Yang XE, Razafindrabe BHN, Inouhe M (2010) The detoxification of lead in Sedum alfredii H. is not related to but the glutathione. J Hazard Mater 177:437–444

    Article  CAS  PubMed  Google Scholar 

  • Harada E, Hokura A, Takada S, Baba K, Terada Y, Nakai I, Yazaki K (2010) Characterization of cadmium accumulation in willow as a woody metal accumulator using synchrotron radiation-based X-ray microanalyses. Plant & cell physiology 51:848–853

    Article  CAS  Google Scholar 

  • Huang L, Zhang H, Song Y, Yang Y, Chen H, Tang M (2017) Subcellular compartmentalization and chemical forms of Lead participate in Lead tolerance of Robinia pseudoacacia L. with Funneliformis mosseae. Front Plant Sci 8:517

    PubMed  PubMed Central  Google Scholar 

  • Inoue H, Fukuoka D, Tatai Y, Kamachi H, Hayatsu M, Ono M, Suzuki S (2013) Properties of lead deposits in cell walls of radish (Raphanus sativus) roots. J Plant Res 126:51–61

    Article  CAS  PubMed  Google Scholar 

  • Islam E, Yang X, Li TQ, Liu D, Jin XF, Meng FH (2007) Effect of Pb toxicity on root morphology, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J Hazard Mater 147(3):806–816

    Article  CAS  PubMed  Google Scholar 

  • Kopittke PM, CJF A, Blamey PC, Auchterlonie GJ, Guo YN, Menzies NW (2008) Localization and chemical speciation of Pb in roots of signal grass (Brachiaria decumbens) and Rhodes grass (Chloris gayana). Environ Sci Technol 42(12):4595–4599

    Article  CAS  PubMed  Google Scholar 

  • Krzeslowska M, Rabda I, Aneta B, Lewandowski M, Wony A (2016) Pectinous cell wall thickenings formation - a common defense strategy of plants to cope with Pb. Environ Pollut 214:354–361

    Article  CAS  PubMed  Google Scholar 

  • Ksiazek M, Wozny A (1990) Lead movement in poplar adventitious roots. Biol Plant 32(1):54–57

    Article  CAS  Google Scholar 

  • Kumar PBAN, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29(5):1232–1238

    Article  CAS  PubMed  Google Scholar 

  • Lane SD, Martin ES (1977) A histochemical investigation of lead uptake in Raphanus sativus. New Phytol 79(2):281–286

    Article  CAS  Google Scholar 

  • Largo-Gosens A, Hernandez-Altamirano M, Garcia-Calvo L, Alonso-Simon A, Alvarez J, Acebes J (2014) Fourier transform mid infrared spectroscopy applications for monitoring the structural plasticity of plant cell walls. Front Plant Sci 5:303

    Article  PubMed  PubMed Central  Google Scholar 

  • Li M, Cheng XH, Guo HX (2013) Heavy metal removal by biomineralization of urease producing bacteria isolated from soil. Int Biodeterior Biodegrad 76:81–85

    Article  CAS  Google Scholar 

  • Liu YQ, Chen GC, Zhang JF, Shi X, Wang RM (2011) Uptake of cadmium from hydroponic solutions by willows (Salix spp.) seedlings. Afr J Biotechnol 10(72):16209–16218

    CAS  Google Scholar 

  • Malecka A, Piechalak A, Tomaszewska B (2009) Reactive oxygen species production and antioxidative defense system in pea root tissues treated with lead ions: the whole roots level. Acta Physiol Plant 31:1053–1063

    Article  CAS  Google Scholar 

  • Małecka A, Piechalak A, Morkunas I, Tomaszewska B (2008) Accumulation of lead in root cells of Pisum sativum. Acta Physiol Plant 30:629–637

    Article  CAS  Google Scholar 

  • Meyers DER, Auchterlonie GJ, Webb RI, Wood B (2008) Uptake and localisation of lead in the root system of Brassica juncea. Environ Pollut 153(2):323–332

    Article  CAS  PubMed  Google Scholar 

  • Marmiroli M, Pietrini F, Maestri E, Zacchini M, Marmiroli N, Massacci A (2011) Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics. Tree Physiol 31(12):1319–1334

    Article  CAS  PubMed  Google Scholar 

  • Mleczek M, Gasecka M, Waliszewska B, Magdziak Z, Szostek M, Rutkowski P, Kaniuczak J, Zborowska M, Budzynska S, Mleczek P, Niedzielski P (2018) Salix viminalis L. - a highly effective plant in phytoextraction of elements. Chemosphere 212:67–78

    Article  CAS  PubMed  Google Scholar 

  • Mun HW, Hoe AL, Koo LD (2008) Assessment of Pb uptake, translocation and immobilization in kenaf (Hibiscus cannabinus L.) for phytoremediation of sand tailings. J Environ 20(11):1341–1347

    Google Scholar 

  • Parrotta L, Guerriero G, Sergeant K, Cai G andHausman JF (2015) Target or barrier? The cell wall of early- and later-diverging plants vs cadmium toxicity: differences in the response mechanisms. Frontiers in Plant Science 6:133

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29(4):529–540

    Article  CAS  PubMed  Google Scholar 

  • Polec-Pawlak K, Ruzik R, Lipiec E, Ciurzynska M, Gawronska H (2007) Investigation of Pb (II) binding to pectin in Arabidopsis thaliana. J Anal At Spectrom 22:968–972

    Article  CAS  Google Scholar 

  • Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E (2011) Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam Toxicol 213:113–136

    CAS  PubMed  Google Scholar 

  • Pourrut B, Shahid M, Douay F, Dumat C, Pinelli E (2013) Molecular mechanisms involved in Lead uptake, toxicity and detoxification in higher plants. In: Gupta D, Corpas F, Palma J (eds) Heavy metal stress in plants. Springer

    Google Scholar 

  • Rytwo G, Zakai R, Wicklein B (2015) The use of ATR-FTIR spectroscopy for quantification of absorbed compounds. Journal of Spectroscopy 2015:8

    Article  CAS  Google Scholar 

  • Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, Matloob A, Rehim A, Hussain S (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721

    Article  CAS  PubMed  Google Scholar 

  • Seregin IV, Ivanov VB (1997) Histochemical investigation of cadmium and lead distribution in plants. Russ J Plant Physiol 44(6):791–796

    CAS  Google Scholar 

  • Seregin IV, Shpigun LK, Ivanov VB (2004) Distribution and toxic effects of cadmium and Lead on maize roots. Russ J Plant Physiol 51(4):525–533

    Article  CAS  Google Scholar 

  • Shahid M, Pinelli E, Dumat C (2012) Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. J Hazard Mater 219:1–12

    Article  PubMed  CAS  Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17(1):35–52

    Article  CAS  Google Scholar 

  • Sharma SS, Dietz KJ, Mimura T (2016) Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. Plant Cell and Environment 39(5):1112–1126

    Article  CAS  Google Scholar 

  • Shi X, Wang S, Sun H, Chen Y, Wang D, Pan H, Zou Y, Liu J, Zheng L, Zhao X, Jiang Z (2017) Comparative of Quercus spp. and Salix spp. for phytoremediation of Pb/Zn mine tailings. Environ Sci Pollut Res Int 24:3400–3411

    Article  CAS  PubMed  Google Scholar 

  • Shi X, Wang SF, Wang DX, Sun HJ, Chen YT, Liu JF, Jiang ZP (2019) Woody species Rhus chinensis mill. Seedlings tolerance to Pb: physiological and biochemical response. J Environ Sci 78:63–73

    Article  Google Scholar 

  • Solé VA, Papillon E, Cotte M, Walter P, Susini J (2007) A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim. Acta B 62:63–68

    Google Scholar 

  • Sun J, Luo L (2018) Subcellular distribution and chemical forms of Pb in corn: strategies underlying tolerance in Pb stress. J Agric Food Chem 66(26):6675–6682

    Article  CAS  PubMed  Google Scholar 

  • Tlustos P, Pavlíková D, Száková J, Balik J (2006) Plant accumulation capacity for potentially toxic elements. In: Morel JK (eds.), phytoremediation of metal-contaminated soils. Springer Netherlands 2006:53–84

    Google Scholar 

  • Tripathi DK, Singh VP, Prasad SM, Dubey NK, Chauhan DK, Rai AK (2016) LIB spectroscopic and biochemical analysis to characterize lead toxicity alleviative nature of silicon in wheat (Triticum aestivum L.) seedlings. J Photochem Photobiol B 154:89–98

    Article  CAS  PubMed  Google Scholar 

  • Tung G, Temple PJ (1996) Uptake and localization of lead in corn (Zea mays L.) seedlings, a study by histochemical and electron microscopy. Sci Total Environ 188:71–85

    Article  CAS  PubMed  Google Scholar 

  • Vandecasteele B, Quataert P, De Vos B, Tack FG, Muys B (2004) Foliar concentrations of volunteer willows growing on polluted sediment-derived sites versus sites with baseline contamination levels. J Environ Monitoring 6:313–332

  • Vollenweider P, Cosio C, Günthardt-Goerg MS, Keller C (2006) Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.). Environ Exp Bot 58(1–3):25–40

    Article  CAS  Google Scholar 

  • Wang X, Liu YG, Zeng GM, Chai LY, Song XC, Min ZY, Xiao X (2008) Subcellular distribution and chemical forms of cadmium in Bechmeria nivea (L.) gaud. Environ Exp Bot 62:389–395

    Article  CAS  Google Scholar 

  • Wang SF, Shi X, Sun HJ, Chen YT, Pan HW, Yang XE, Rafiq T (2014) Variations in metal tolerance and accumulation in three hydroponically cultivated zarieties of Salix integra treated with lead. PLoS ONE:e108568

  • Wang QY, Liu JS, Hu B (2016) Integration of copper subcellular distribution and chemical forms to understand copper toxicity in apple trees. Environ Exp Bot 123:125–131.

    Article  CAS  Google Scholar 

  • Wang J, Ye S, Xue SG, Hartley W, Wu H, Shi LZ (2018) The physiological response of Mirabilis Jalapa Linn. To lead stress and accumulation. Int Biodeterior Biodegradation 128:11–14

    Article  CAS  Google Scholar 

  • Wierzbicka M (1999) Comparison of lead tolerance in Allium cepa with other plant species. Environ Pollut 104(1):41–52

    Article  CAS  Google Scholar 

  • Wu H, Wang J, Li B, Ou Y, Wang J, Shi Q, Jiang W, Liu D, Zou J (2016) Salix matsudana Koidz tolerance mechanisms to cadmium: uptake and accumulation, subcellular distribution, and chemical forms. Pol J Environ Stud 25:1739–1747

    Article  CAS  Google Scholar 

  • Wu Z, McGrouther K, Chen D, Wu W, Wang H (2013) Subcellular distribution of metals within Brassica chinensis L. in response to elevated lead and chromium stress. J Agric Food Chem 61:4715–4722

    Article  CAS  PubMed  Google Scholar 

  • Xue WX, Jiang Y, Shang XS, Zou JH (2020) Characterisation of early responses in lead accumulation and localization of Salix babylonica L. roots. BMC Plant Biol 20:296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Li K, Zheng W, Zhang H, Cao X, Lan Y, Yang C, Li C (2015) Characterization of early transcriptional responses to cadmium in the root and leaf of cd-resistant Salix matsudana Koidz. BMC Genomics 16:705

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao L, Li T, Yu H, Chen G, Zhang X, Zheng Z, Li J (2015) Changes in chemical forms, subcellular distribution, and thiol compounds involved in Pb accumulation and detoxification in Athyrium wardii (hook.). Environ. Sci. Pollut. Res. 22(16):12676–12688

    CAS  Google Scholar 

  • Zhang J, Tian S, Lu L, Shohag MJI, Liao HB, Yang XE (2011) Lead tolerance and cellular distribution in Elsholtzia splendens using synchrotron radiation micro-X-ray fluorescence. J Hazard Mater 197:264–271

    Article  CAS  PubMed  Google Scholar 

  • Zhivotovsky OP, Kuzovkina JA, Schulthess CP, Morris T, Pettinelli D, Ge M (2010) Hydroponic screening of willows (Salix L.) for lead tolerance and accumulation. International journal of phytoremediation 13(1):75–94

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31770653; 314000526) and the Zhejiang Science and Technology Major Program on Agricultural (trees) New Variety Breeding (2016C02056-11). We acknowledge the support from the 4W1B beamline of BSRF (Beijing Synchrotron Radiation Facility), Institute of High Energy Physics, Chinese Academy of Sciences. We are grately thankful for the help of Dr. Dongliang Chen and Dr. Juncai Dongfor their technical assistance in data acquisition and processing. We are also thankful to Dr. Hengfu Yin and Dr. Xiaojiao Han for their valuable suggestions during the revision period.

Author information

Authors and Affiliations

Authors

Contributions

Shufeng Wang: Conceptualization, Methodology, Original draft preparation.

Xiang Shi: Data curation.

Guangcai Chen: Conceptualization, Methodology, Supervision.

Mir Md Abdus Salam: Reviewing and Editing.

Corresponding author

Correspondence to Guangcai Chen.

Ethics declarations

Compliance with ethical standards

The authors declare that there is no conflicts of interest exists among fundings, and no Human Participants and/or Animals involved.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Juan Barcelo

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary file 1

Histochemical stainning of Pb in root tips of S. integra using dithizone method in 0–48 h treated with 100 μM of Pb (PNG 26376 kb)

High Resolution Image (TIF 903 kb) (TIF 838 kb)

Supplementary file 2

Energy counts of Pb and other mutrient elements based on micro-XRF scanning (XLSX 31 kb)

ESM 3

(PDF 250 kb)

Supplementary file 4

Transmission electron micrographs of plant cells.((a): Root cells of the control plants; (b) and (c): Root cells exposed to 200 μM Pb for 14 days; (d): Leaf cells of the control plants; (e) and (f): Leaf cells exposed to 200 μM Pb for 14 days; CW: cell walls; V: vacuole; IS: intercellular spaces; TP: trophoplast; Pl: plasmalemma; ER: endoplasmic reticulum; Chl: chloroplast. 1–6: energy spectrum sites) (PNG 25010 kb)

High Resolution Image (TIF 903 kb)

Supplementary file 5

EDX-spectrum of Pb precipitates in different subcellular spaces of root and leaf. (1: root cell walls and intercellular spaces; 2: trophoplast; 3: endoplasmic reticulum; 4: leaf cell walls; 5: intercellular spaces of leaf cells; 6: valuoles of leaf cells.) (PNG 25010 kb)

High Resolution Image (TIF 242 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Shi, X., Salam, M.M.A. et al. Integrated study on subcellular localization and chemical speciation of Pb reveals root strategies for Pb sequestration and detoxification in Salix integra. Plant Soil 467, 197–211 (2021). https://doi.org/10.1007/s11104-021-05045-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-021-05045-1

Keywords

Navigation