Skip to main content

Advertisement

Log in

Metabolic profiling of benzoxazinoids in the roots and rhizosphere of commercial winter wheat genotypes

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and objectives

Integrated weed management in commercial wheat production is urgently needed due to increasing herbicide resistance and production costs. Benzoxazinoids (BXs), which include benzoxazinones and benzoxazolinones, are unique bioactive metabolites produced by certain members of the Poaceae including maize, wheat, rye and some dicots. BXs play important roles in plant defence and are causal agents of allelopathic interference. We investigated the role of genetics, environment and crop growth stage on BX abundance in the roots and rhizoplane of selected commercial wheat cultivars, and quantified their microbial transformation products (aminophenoxazinones) in roots and rhizosphere soils.

Methods

Cultivar trials of competitive wheat (Triticum aestivum L.) genotypes were conducted in two moderate to low rainfall (449–572 mm) locations in southeastern Australia in 2015 and 2016. Replicated shoot, root, rhizoplane, and rhizosphere soil samples were collected for metabolic profiling at selected crop phenological stages, extracted and further analysed for known benzoxazinoid metabolites by liquid chromatography coupled with high resolution mass spectrometry.

Results

Fifteen BXs and related microbially derived aminophenoxazinones were detected in wheat shoots, roots, rhizoplanes and rhizosphere soils in both years and locations. MBOA, HMBOA and HMBOA-Glc were the three most abundant BX metabolites in wheat tissues, with the heritage cultivar Federation producing the highest levels of MBOA. The phytotoxic aminophenoxazinones APO and AMPO were the most abundant BX microbial transformation products and were detected in wheat roots, rhizoplanes and rhizospheres. Abundance varied with cultivar, growth stage, location and year.

Conclusions

Microbially-produced aminophenoxazinones generated from both heritage and modern wheat root exudates were detected and quantified in rhizosphere soils, with abundance dependent on cultivar, growth stage, and season. Concentrations of microbial metabolites APO, AMPO, and AAPO were higher in the rhizosphere of young wheat seedlings in contrast to that of mature plants suggesting that phenoxazinone production was upregulated early in the season. Our findings demonstrate that BX metabolites at all life stages of wheat potentially undergo rapid biotransformation to aminophenoxazinones under field conditions, resulting in ecologically relevant concentrations sufficient for weed suppression by certain wheat cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adhikari KB, Tanwir F, Gregersen PL, Steffensen SK, Jensen BM, Poulsen LK, Fomsgaard IS (2015) Benzoxazinoids: Cereal phytochemicals with putative therapeutic and health-protecting properties. Mol Nutr Food Res 59(7):1324–1338

    Article  CAS  PubMed  Google Scholar 

  • Åhman I, Johansson M (1994) Effect of light on DIMBOA-glucoside concentration in wheat (Triticum aestivum L.). Ann Appl Biol 124(3):569–574

    Article  Google Scholar 

  • Argandoña VH, Luza JG, Niemeyer HM, Corcuera LJ (1980) Role of hydroxamic acids in the resistance of cereals to aphids. Phytochemistry 19(8):1665–1668

    Article  Google Scholar 

  • Barto EK, Hilker M, Müller F, Mohney BK, Weidenhamer JD, Rillig MC (2011) The fungal fast lane: common mycorrhizal networks extend bioactive zones of allelochemicals in soils. PLoS ONE 6(11):e27195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belz RG (2007) Allelopathy in crop/weed interactions—an update. Pest Manag Sci 63(4):308–326

    Article  CAS  PubMed  Google Scholar 

  • Belz RG, Hurle K (2005) Differential exudation of two benzoxazinoids– one of the determining factors for seedling allelopathy of Triticeae species. J Agric Food Chem 53:250–261

    Article  CAS  PubMed  Google Scholar 

  • Bertholdsson NO (2004) Variation in allelopathic activity over 100 years of barley selection and breeding. Weed Res 44(2):78–86

    Article  Google Scholar 

  • Bertholdsson NO (2011) Use of multivariate statistics to separate allelopathic and competitive factors influencing weed suppression ability in winter wheat. Weed Res 51(3):273–283

    Article  Google Scholar 

  • Bertholdsson NO (2012) Allelopathy—a tool to improve the weed competitive ability of wheat with herbicide-resistant black-grass (Alopecurus myosuroides Huds.). Agronomy 2(4):284–294

    Article  Google Scholar 

  • Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256(1):67–83

    Article  CAS  Google Scholar 

  • Blum U (2006) Allelopathy: a soil system perspective. Allelopathy. Springer, Dordrecht, pp 299–340

    Google Scholar 

  • Burgos NR, Talbert RE, Mattice JD (1999) Cultivar and age differences in the production of allelochemicals by Secale cereale. Weed Sci 47(5):481–485

    Article  CAS  Google Scholar 

  • Cambier V, Hance T, De Hoffmann E (2001) Effects of 1, 4-benzoxazin-3-one derivatives from maize on survival and fecundity of Metopolophium dirhodum (Walker) on artificial diet. J Chem Ecol 27(2):359–370

    Article  CAS  PubMed  Google Scholar 

  • Carlsen SC, Kudsk P, Laursen B, Mathiassen SK, Mortensen AG, Fomsgaard IS (2009) Allelochemicals in rye (Secale cereale L.): cultivar and tissue differences in the production of benzoxazinoids and phenolic acids. Nat Prod Commun 4(2):199–208

    CAS  PubMed  Google Scholar 

  • Chen KJ, Zheng YQ, Kong CH, Zhang SZ, Li J, Liu XG (2010) 2, 4-Dihydroxy-7-methoxy-1, 4-benzoxazin-3-one (DIMBOA) and 6-methoxy-benzoxazolin-2-one (MBOA) levels in the wheat rhizosphere and their effect on the soil microbial community structure. J Agric Food Chem 58(24):12710–12716

    Article  CAS  PubMed  Google Scholar 

  • Cheng F, Cheng Z (2015) Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front Plant Sci 6:1020

    Article  PubMed  PubMed Central  Google Scholar 

  • Cipollini D, Rigsby CM, Barto EK (2012) Microbes as targets and mediators of allelopathy in plants. J Chem Ecol 38(6):714–727

    Article  CAS  PubMed  Google Scholar 

  • Copaja SV, Nicol D, Wratten SD (1999) Accumulation of hydroxamic acids during wheat germination. Phytochemistry 50(1):17–24

    Article  CAS  Google Scholar 

  • Dayan FE (2006) Factors modulating the levels of the allelochemical sorgoleone in Sorghum bicolor. Planta 224(2):339–346

    Article  CAS  PubMed  Google Scholar 

  • Dayan FE, Duke SO (2010) Natural products for weed management in organic farming in the USA. Outlooks Pest Manag 21(4):156–160

    Article  Google Scholar 

  • Dick R, Rattei T, Haslbeck M, Schwab W, Gierl A, Frey M (2012) Comparative analysis of benzoxazinoid biosynthesis in monocots and dicots: independent recruitment of stabilization and activation functions. Plant Cell 24(3):915–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebisui K, Ishihara A, Hirai N, Iwamura H (1998) Occurrence of 2, 4-dihydroxy-7-methoxy-1, 4-benzoxazin-3-one (DIMBOA) and a β-glucosidase specific for its glucoside in maize seedlings. Zeitschrift Für Naturforschung C 53(9–10):793–798

    Article  CAS  Google Scholar 

  • Epstein WW, Rowsemitt CN, Berger PJ, Negus NC (1986) Dynamics of 6-methoxybenzoxazolinone in winter wheat. J Chem Ecol 12(10):2011–2020

    Article  CAS  PubMed  Google Scholar 

  • Fomsgaard IS, Mortensen AG, Carlsen SC (2004) Microbial transformation products of benzoxazolinone and benzoxazinone allelochemicals––a review. Chemosphere 54(8):1025–1038

    Article  CAS  PubMed  Google Scholar 

  • Fomsgaard IS, Mortensen AG, Idinger J, Coja T, Blümel S (2006) Transformation of benzoxazinones and derivatives and microbial activity in the test environment of soil ecotoxicological tests on Poecilus cupreus and Folsomia candida. J Agric Food Chem 54(4):1086–1092

    Article  CAS  PubMed  Google Scholar 

  • Frey M, Schullehner K, Dick R, Fiesselmann A, Gierl A (2009) Benzoxazinoid biosynthesis, a model for evolution of secondary metabolic pathways in plants. Phytochemistry 70(15–16):1645–1651

    Article  CAS  PubMed  Google Scholar 

  • Friebe A, Vilich V, Hennig L, Kluge M, Sicker D (1998) Detoxification of benzoxazolinone allelochemicals from wheat by Gaeumannomyces graminis var. tritici, G. graminis var. graminis, G. graminis var. avenae, and Fusarium culmorum. Appl Environ Microbiol 64:2386–2391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gianoli E, Niemeyer HM (1997) Environmental effects on the accumulation of hydroxamic acids in wheat seedlings: the importance of plant growth rate. J Chem Ecol 23(2):543–551

    Article  CAS  Google Scholar 

  • Glauser G, Marti G, Villard N, Doyen GA, Wolfender JL, Turlings TC, Erb M (2011) Induction and detoxification of maize 1, 4-benzoxazin-3-ones by insect herbivores. Plant J 68(5):901–911

    Article  CAS  PubMed  Google Scholar 

  • Gurusinghe S, Brooks TL, Barrow RA, Zhu X, Thotagamuwa A, Dennis PG, Gupta VV, Vanniasinkam T, Weston LA (2019) Technologies for the selection, culture and metabolic profiling of unique rhizosphere microorganisms for natural product discovery. Molecules 24(10):1955

    Article  CAS  PubMed Central  Google Scholar 

  • Hanhineva K, Rogachev I, Aura AM, Aharoni A, Poutanen K, Mykkanen H (2011) Qualitative characterization of benzoxazinoid derivatives in whole grain rye and wheat by LC-MS metabolite profiling. J Agric Food Chem 59(3):921–927

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto Y, Shudo K (1996) Chemistry of biologically active benzoxazinoids. Phytochemistry 43(3):551–559

    Article  CAS  PubMed  Google Scholar 

  • Heap I, Duke SO (2018) Overview of glyphosate-resistant weeds worldwide. Pest Manag Sci 74(5):1040–1049

    Article  CAS  PubMed  Google Scholar 

  • Hofman J, Hofmanova O (1969) 1, 4-Benzoxazine derivatives in plants: sephadex fractionation and identification of a new glucoside. Eur J Biochem 8(1):109–112

    Article  CAS  PubMed  Google Scholar 

  • Inderjit NF (2001) Soil: environmental effects on allelochemical activity. Agron J 93(1):79–84

    Article  CAS  Google Scholar 

  • Jabran K, Mahajan G, Sardana V, Chauhan BS (2015) Allelopathy for weed control in agricultural systems. Crop Prot 72:57–65

    Article  Google Scholar 

  • Kato-Noguchi H, Macías FA, Molinillo JM (2010) Structure–activity relationship of benzoxazinones and related compounds with respect to the growth inhibition and α-amylase activity in cress seedlings. J Plant Physiol 167(15):1221–1225

    Article  CAS  PubMed  Google Scholar 

  • Kong CH, Li HB, Hu F, Xu XH, Wang P (2006) Allelochemicals released by rice roots and residues in soil. Plant Soil 288(1–2):47–56

    Article  CAS  Google Scholar 

  • Krogh SS, Mensz SJ, Nielsen ST, Mortensen AG, Christophersen C, Fomsgaard IS (2006) Fate of benzoxazinone allelochemicals in soil after incorporation of wheat and rye sprouts. J Agric Food Chem 54(4):1064–1074

    Article  CAS  PubMed  Google Scholar 

  • Kudjordjie EN, Sapkota R, Steffensen SK, Fomsgaard IS, Nicolaisen M (2019) Maize synthesized benzoxazinoids affect the host associated microbiome. Microbiome 7(1):1–17

    Article  Google Scholar 

  • Lu CH, Liu XG, Xu J, Dong FS, Zhang CP, Tian YY, Zheng YQ (2012) Enhanced exudation of DIMBOA and MBOA by wheat seedlings alone and in proximity to wild oat (Avena fatua) and flixweed (Descurainia sophia). Weed Sci 60(3):360–365

    Article  CAS  Google Scholar 

  • Macías FA, Marín D, Oliveros-Bastidas A, Castellano D, Simonet AM, Molinillo JM (2005a) Structure-activity relationships (SAR) studies of benzoxazinones, their degradation products and analogues. Phytotoxicity on standard target species (STS). J Agric Food Chem 53(3):538–548

    Article  PubMed  CAS  Google Scholar 

  • Macías FA, Oliveros-Bastidas A, Marín D, Castellano D, Simonet AM, Molinillo JM (2005b) Degradation studies on benzoxazinoids. Soil degradation dynamics of (2 R)-2-O-β-d-glucopyranosyl-4-hydroxy-(2 H)-1, 4-benzoxazin-3 (4 H)-one (DIBOA-Glc) and its degradation products, phytotoxic allelochemicals from Gramineae. J Agric Food Chem 53(3):554–561

    Article  PubMed  CAS  Google Scholar 

  • Macías FA, Marín D, Oliveros-Bastidas A, Castellano D, Simonet AM, Molinillo JM (2006) Structure-activity relationship (SAR) studies of benzoxazinones, their degradation products, and analogues. Phytotoxicity on problematic weeds Avena fatua L. and Lolium rigidum Gaud. J Agric Food Chem 54(4):1040–1048

    Article  PubMed  CAS  Google Scholar 

  • Macías FA, Molinillo JM, Varela RM, Galindo JC (2007) Allelopathy—a natural alternative for weed control. Pest Manag Sci 63(4):327–348

    Article  PubMed  CAS  Google Scholar 

  • Macías FA, Marín D, Oliveros-Bastidas A, Molinillo JM (2009) Rediscovering the bioactivity and ecological role of 1, 4-benzoxazinones. Nat Prod Rep 26(4):478–489

    Article  PubMed  CAS  Google Scholar 

  • Macías FA, Oliveros-Bastidas A, Marín D, Chinchilla N, Castellano D, Molinillo JM (2014) Evidence for an allelopathic interaction between rye and wild oats. J Agric Food Chem 62(39):9450–9457

    Article  PubMed  CAS  Google Scholar 

  • Makowska B, Bakera B, Rakoczy-Trojanowska M (2015) The genetic background of benzoxazinoid biosynthesis in cereals. Acta Physiol Plant 37(9):176

    Article  CAS  Google Scholar 

  • Manuwoto S, Scriber JM (1985) Neonate larval survival of European corn borers, Ostrinia nubilalis, on high and low DIMBOA genotypes of maize: effects of light intensity and degree of insect inbreeding. Agric Ecosyst Environ 14(3–4):221–236

    Article  Google Scholar 

  • Mathiassen SK, Kudsk P, Mogensen BB (2006) Herbicidal effects of soil-incorporated wheat. J Agric Food Chem 54(4):1058–1063

    Article  CAS  PubMed  Google Scholar 

  • Mogensen BB, Krongaard T, Mathiassen SK, Kudsk P (2006) Quantification of benzoxazinone derivatives in wheat (Triticum aestivum L.) varieties grown under contrasting conditions in Denmark. J Agric Food Chem 54(4):1023–1030

    Article  CAS  PubMed  Google Scholar 

  • Mohney BK, Matz T, LaMoreaux J, Wilcox DS, Gimsing AL, Mayer P, Weidenhamer JD (2009) In situ silicone tube microextraction: a new method for undisturbed sampling of root-exuded thiophenes from marigold (Tagetes erecta L.) in soil. J Chem Ecol 35(11):1279–1287

    Article  CAS  PubMed  Google Scholar 

  • Mokhtari S, Galwey NW, Cousens RD, Thurling N (2002) The genetic basis of variation among wheat F3 lines in tolerance to competition by ryegrass (Lolium rigidum). Euphytica 124(3):355–364

    Article  CAS  Google Scholar 

  • Muzell Trezzi M, Vidal RA, Balbinot Junior AA, von Hertwig Bittencourt H, da Silva Souza Filho AP (2016) Allelopathy: Driving mechanisms governing its activity in agriculture. J Plant Interact 11(1):53–60

    Article  CAS  Google Scholar 

  • Mwendwa JM, Weston PA, Fomsgaard I, Laursen BB, Brown WB, Wu H, Rebetzke G, Quinn JC and Weston LA (2016) Metabolic profiling for benzoxazinoids in weed-suppressive and early vigour wheat genotypes. In 20th Australasian Weeds Conference, pp 353-357

  • Mwendwa JM, Weston PA, Fomsgaard I, Laursen BB, Brown WB, Wu H, Quinn JC and Weston LA (2018) Metabolic profiling for benzoxazinoids in weed-suppressive and early vigour wheat genotypes. In 21st Proceedings of the Australasian Weeds Conference, p 146

  • Mwendwa JM, Brown WB, Weidenhamer JD, Weston PA, Quinn JC, Wu H, Weston LA (2020) Evaluation of commercial wheat cultivars for canopy architecture, early vigour, weed suppression, and yield. Agronomy 10(7):983

    Article  Google Scholar 

  • Neal AL, Ahmad S, Gordon-Weeks R, Ton J (2012) Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PLoS ONE 7(4):e35498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niculaes C, Abramov A, Hannemann L, Frey M (2018) Plant protection by benzoxazinoids—recent insights into biosynthesis and function. Agronomy 8(8):143

    Article  CAS  Google Scholar 

  • Niemeyer HM (2009) Hydroxamic acids derived from 2-hydroxy-2 H-1, 4-benzoxazin-3 (4 H)-one: key defense chemicals of cereals. J Agric Food Chem 57(5):1677–1696

    Article  CAS  PubMed  Google Scholar 

  • Niemeyer HM, Jerez JM (1997) Chromosomal location of genes for hydroxamic acid accumulation in Triticum aestivum L. (wheat) using wheat aneuploids and wheat substitution lines. Heredity 79(1):10

    Article  CAS  Google Scholar 

  • Nomura T, Ishihara A, Yanagita RC, Endo TR, Iwamura H (2005) Three genomes differentially contribute to the biosynthesis of benzoxazinones in hexaploid wheat. Proc Natl Acad Sci 102(45):16490–16495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nomura T, Nasuda S, Kawaura K, Ogihara Y, Kato N, Sato F, ... Endo TR (2008) Structures of the three homoeologous loci of wheat benzoxazinone biosynthetic genes TaBx3 and TaBx4 and characterization of their promoter sequences. Theor Appl Genet 116(3):373–381

  • Pedersen HA, Heinrichson K, Fomsgaard IS (2017) Alterations of the benzoxazinoid profiles of uninjured maize seedlings during freezing, storage, and lyophilization. J Agric Food Chem 65(20):4103–4110

    Article  CAS  PubMed  Google Scholar 

  • Rebetzke G, Ingvordsen C, Newman P, Weston LA, French B, Gill G (2018) Delivering weed-competitive, wheat breeding lines to growers. GRDC Grains Research Update, Wagga Wagga, pp 35–40

  • Reiss A, Fomsgaard IS, Mathiassen SK, Kudsk P (2018) Silicone tube microextraction for repeated sampling of benzoxazinoids in the root zone and analysis by HPLC/MS-MS. J Allelochem Interact 4(2):27–37

    Google Scholar 

  • Rice CP, Cai G, Teasdale JR (2012) Concentrations and allelopathic effects of benzoxazinoid compounds in soil treated with rye (Secale cereale) cover crop. J Agric Food Chem 60(18):4471–4479

    Article  CAS  PubMed  Google Scholar 

  • Rice CP, Park YB, Adam F, Abdul-Baki AA, Teasdale JR (2005) Hydroxamic acid content and toxicity of rye at selected growth stages. J Chem Ecol 31(8):1887–1905

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Moreiras AM, Oliveros-Bastidas A, Reigosa MJ (2010) Reduced photosynthetic activity is directly correlated with 2-(3H)-benzoxazolinone accumulation in lettuce leaves. J Chem Ecol 36(2):205–209

    Article  PubMed  CAS  Google Scholar 

  • Schandry N, Becker C (2020) Allelopathic plants: Models for studying plant–interkingdom interactions. Trends Plant Sci 25(2):176–185

    Article  CAS  PubMed  Google Scholar 

  • Schulz M, Marocco A, Tabaglio V, Macias FA, Molinillo JM (2013) Benzoxazinoids in rye allelopathy-from discovery to application in sustainable weed control and organic farming. J Chem Ecol 39(2):154–174

    Article  CAS  PubMed  Google Scholar 

  • Schulz M, Schütz V, Bigler L, Sicker D, Laschke L (2019) Conversions of benzoxazinoids and downstream metabolites by soil microorganisms. Front Ecol Evol 7:238

    Article  Google Scholar 

  • Seavers GP, Wright KJ (1999) Crop canopy development and structure influence weed suppression. Weed Res 39(4):319–328

    Article  Google Scholar 

  • Simcox KD, Weber DF (1985) Location of the benzoxazinless (bx) locus in maize by monosomic and BA translocational analyses 1. Crop Sci 25(5):827–830

    Article  Google Scholar 

  • Tabaglio V, Gavazzi C, Schulz M, Marocco A (2008) Alternative weed control using the allelopathic effect of natural benzoxazinoids from rye mulch. Agron Sustain Dev 28(3):397–401

    Article  CAS  Google Scholar 

  • Tanwir F, Fredholm M, Gregersen PL, Fomsgaard IS (2013) Comparison of the levels of bioactive benzoxazinoids in different wheat and rye fractions and the transformation of these compounds in homemade foods. Food Chem 141(1):444–450

    Article  CAS  PubMed  Google Scholar 

  • Understrup AG, Ravnskov S, Hansen HC, Fomsgaard IS (2005) Biotransformation of 2-benzoxazolinone to 2-amino-(3H)-phenoxazin-3-one and 2-acetylamino-(3H)-phenoxazin-3-one in soil. J Chem Ecol 31(5):1205–1222

    Article  CAS  PubMed  Google Scholar 

  • Vandeleur RK, Gill GS (2004) The impact of plant breeding on the grain yield and competitive ability of wheat in Australia. Crop Pasture Sci 55(8):855–861

    Article  Google Scholar 

  • Venturelli S, Belz RG, Kämper A, Berger A, von Horn K, Wegner A, ... Barneche F (2015) Plants release precursors of histone deacetylase inhibitors to suppress growth of competitors. Plant Cell 27(11):3175–3189

  • Villagrasa M, Eljarrat E, Barceló D (2009) Analysis of benzoxazinone derivatives in plant tissues and their degradation products in agricultural soils. TrAC Trends Anal Chem 28(9):1103–1114

    Article  CAS  Google Scholar 

  • Virtanen AI, Hietala PK (1955) 2 (3)-Benzoxazolinone, an anti-Fusarium factor in rye seedlings. Acta Chem Scand 9(9):1543–1544

    Article  CAS  Google Scholar 

  • Virtanen AI, Hietala PK, Wahlroos O (1956) An antifungal factor in maize and wheat plants. Suomen Kemistilehti B 29:143

    Google Scholar 

  • Wahlroos O, Virtanen AI (1959) On the formation of 6-methoxybenzoxazolinone in maize and wheat plants. Suom Kemistil B 32:139–140

    Google Scholar 

  • Weidenhamer JD (1996) Distinguishing resource competition and chemical interference: overcoming the methodological impasse. Agron J 88(6):866–875

    Article  Google Scholar 

  • Weston LA (2005) History and current trends in the use of allelopathy for weed management. Hort Technology 15(3):529–534

    Article  Google Scholar 

  • Weston LA, Duke SO (2003) Weed and crop allelopathy. Crit Rev Plant Sci 22(3–4):367–389

    Article  CAS  Google Scholar 

  • Weston LA, Skoneczny D, Weston PA, Weidenhamer JD (2015) Metabolic profiling: an overview—new approaches for the detection and functional analysis of biologically active secondary plant products. Journal of Allelochemical Interactions 2:15–27

    Google Scholar 

  • Woodward MD, Corcuera LJ, Helgeson JP, Upper CD (1978) Decomposition of 2, 4-dihydroxy-7-methoxy-2H-1, 4-benzoxazin-3 (4H)-one in aqueous solutions. Plant Physiol 61(5):796–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worthington M, Reberg-Horton C (2013) Breeding cereal crops for enhanced weed suppression: optimizing allelopathy and competitive ability. J Chem Ecol 39(2):213–231

    Article  CAS  PubMed  Google Scholar 

  • Worthington ML, Reberg-Horton SC, Jordan D, Murphy JP (2013) A comparison of methods for evaluating the suppressive ability of winter wheat cultivars against Italian ryegrass (Lolium perenne). Weed Sci 61(3):491–499

    Article  CAS  Google Scholar 

  • Wouters FC, Blanchette B, Gershenzon J, Vassão DG (2016) Plant defense and herbivore counter-defense: Benzoxazinoids and insect herbivores. Phytochem Rev 15(6):1127–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H (2016) Integrating belowground non-chemical approaches for future weed management. In: Travlos IS, Bilalis D, Chachalis D (eds) Weed and pest control: molecular biology, practices and environmental impact. Nova Science Publishers Inc, Hauppauge

    Google Scholar 

  • Wu H, Haig T, Pratley J, Lemerle D, An M (1999) Simultaneous determination of phenolic acids and 2, 4-dihydroxy-7-methoxy-1, 4-benzoxazin-3-one in wheat (Triticum aestivum L.) by gas chromatography–tandem mass spectrometry. J Chromatogr A 864(2):315–21

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Haig T, Pratley J, Lemerle D, An M (2000) Distribution and exudation of allelochemicals in wheat (Triticum aestivum L.). J Chem Ecol 26(9):2141–2154

    Article  CAS  Google Scholar 

  • Wu H, Haig T, Pratley J, Lemerle D, An M (2001) Allelochemicals in wheat (Triticum aestivum L.): variation of phenolic acids in shoot tissues. J Chem Ecol 27(1):125–35

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Yang L, Wang R, Zhang Y, Shang Q, Wang L, ... Xie Z (2015) In vitro study of the growth, development and pathogenicity responses of Fusarium oxysporum to phthalic acid, an autotoxin from Lanzhou lily. World J Microbiol Biotechnol 31(8):1227–1234

Download references

Acknowledgements

We acknowledge a) the financial support of the Grains Research and Development Corporation to Charles Sturt University (Projects UCS 00020, 00022, and 00023) b) Prof. Inge S. Fomsgaard, Aarhus University, Denmark for providing chemical standards for certain BXs and soil microbial metabolites (aminophenoxazinones), c) technical support of Graeme Heath, Dom Skoneczny, Xiaocheng Zhu, Saliya Gurusinghe, Razia Shaik, Mr Vincent West and Mr Jack Wess with respect to field sampling, data collection, extraction and analyses d) Mrs Bente Laursen, Aarhus University, Denmark for technical support in liquid chromatography-mass spectrometry and e) J Mwendwa’s advisory committee members including J Quinn for their advice and encouragement over the course of thesis completion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie A. Weston.

Additional information

Responsible Editor: Hans Lambers.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 112 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mwendwa, J.M., Weston, P.A., Weidenhamer, J.D. et al. Metabolic profiling of benzoxazinoids in the roots and rhizosphere of commercial winter wheat genotypes. Plant Soil 466, 467–489 (2021). https://doi.org/10.1007/s11104-021-04996-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-021-04996-9

Keywords

Navigation