Skip to main content
Log in

Response of bacterial communities and plant-mediated soil processes to nitrogen deposition and precipitation in a desert steppe

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Changes in nitrogen (N) and precipitation levels can substantially alter soil properties and plant growth, thereby altering soil microbial diversity and functionality.

Method

We used manipulated precipitation treatments (50% reduction, control, and plus 50%) and tested two N fertilization levels (control and plus 35 kg N ha−1 yr−1) from a 4-year field experiment to evaluate the effects on soil bacterial diversity, community composition, and N-cycle gene abundance.

Results

N additions significantly increased ammonia-oxidizing bacterial abundance (via AOB-amoA) but decreased denitrification genes (i.e., nirS and nosZ). Decreased precipitation significantly decreased the abundance of N-cycle genes (AOB-amoA, nirS, and nosZ), while increased precipitation conversely increased the abundance of these same genes. Decreased precipitation led to differences in the microbial community composition that favored drought resistance, indicating that plant-associated microbiomes may be able to modulate plant growth fitness in the context of extreme environmental conditions. N additions substantially altered soil bacterial communities, increasing the relative abundance of certain bacteria and of nitrification-related genes in a manner that depended on precipitation fluctuations.

Conclusions

Differences in the bacterial community composition and N-cycle genes determined the functional response of a grassland ecosystem to decreased precipitation conditions, and therefore could affect the influence of N deposition on plant growth as well as the physical and chemical properties of the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alberto C, Yolima C, Pierre M, Lachlan I, Feike AD (2016) Soil microbial community resistance to drought and links to C stabilization in an Australian grassland. Soil Biol Biochem 103:171–180

    Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller Z, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    PubMed  PubMed Central  CAS  Google Scholar 

  • Amend AS, Martiny AC, Allison SD, Berlemont R, Goulden ML, Lu Y, Treseder KK, Weihe C, Martiny JBH (2016) Microbial response to simulated global change is phylogenetically conserved and linked with functional potential. ISME J 10:109–118

    PubMed  CAS  Google Scholar 

  • Amundson RG, Trask J, Pendall E (1988) A rapid method of soil carbonate analysis using gas chromatography. Soil Science Society of America J 52:880–883

    CAS  Google Scholar 

  • Araya YN, Gowing DJ, Dise N (2013) Does soil nitrogen availability mediate the response of grassland composition to water regime? J Veg Sci 24:506–517

    Google Scholar 

  • Asensio D, Peñuelas J, Ogaya R, Llusià J (2007) Seasonal soil VOC exchange rates in a Mediterranean holm oak forest and their responses to drought conditions. Atmos Environ 41:2456–2466

    CAS  Google Scholar 

  • Asnicar F, Weingart G, Tickle TL, Huttenhower C, Segata N (2015) Compact graphical representation of phylogenetic data and metadata with GraPhlAn. Peerj 3

  • Avrahami S, Liesack W, Conrad R (2003) Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers. Environ Microbiol 5:691–705

    PubMed  CAS  Google Scholar 

  • Bastida F, Jehmlich N, Lima K, Morris BEL, Richnow HH, Hernández T, Bergen MV, García C (2016a) The ecological and physiological responses of the microbial community from a semiarid soil to hydrocarbon contamination and its bioremediation using compost amendment. J Proteome 135:162–169

    CAS  Google Scholar 

  • Bastida F, Torres IF, Moreno JL, Baldrian P, Ondoño S, Ruiz-Navarro A, Hernández T, Richnow HH, Starke R, García C, Jehmlich N (2016b) The active microbial diversity drives ecosystem multifunctionality and is physiologically related to carbon availability in Mediterranean semi-arid soils. Mol Ecol 25:4660–4673

    PubMed  CAS  Google Scholar 

  • Bastida F, Torres IF, Andrés-Abellán M, Baldrian P, López-Mondéjar R, Větrovsky T, Richnow HH, Starke R, Ondoño S, García C, López-Serrano FR, Jehmlich N (2017) Differential sensitivity of total and active soil microbial communities to drought and forest management. Glob Chang Biol 23:4185–4203

    PubMed  Google Scholar 

  • Bérard A, Bouchet T, Sévenier G, Pablo AL, Gros R (2011) Resilience of soil microbial communities impacted by severe drought and high temperature in the context of Mediterranean heat waves. Eur J Soil Biol 47:333–342

    Google Scholar 

  • Bergmann GT, Bates TB, Eilers KG, Lauber CL, Gregory Caporaso J, Walters WA, Knight R, Fierer N (2011) The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol Biochem 43:1450–1455

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bi J, Zhang NL, Liang Y, Yang HJ, Ma KP (2011) Interactive effects of water and nitrogen addition on soil microbial communities in a semi-arid steppe. J Plant Ecol 5:320–329

    Google Scholar 

  • Bowman WD, Cleveland CC, Halada L, Hresko J, Baron JS (2008) Negative impact of nitrogen deposition on soil buffering capacity. Nat Geosci 1:767–770

    CAS  Google Scholar 

  • Bustamante M, Verdejo V, Zúñiga C, Espinosa F, Orlando J, Carú M (2012) Comparison of water availability effect on ammonia-oxidizing bacteria and archaea in microcosms of a Chilean semiarid soil. Front Microbiol 3:1–10

    Google Scholar 

  • Campbell BJ, Polson SW, Hanson TE, Mack MC, Schuur EAG (2010) The effect of nutrient deposition on bacterial communities in Arctic tundra soil. Environmen Microbiol 12:1842–1854

    CAS  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chapman N, Miller AJ, Lindsey K, Whalley WR (2012) Roots, water, and nutrient acquisition: let’s get physical. Trends Plant Sci 17(12):701–710

    PubMed  CAS  Google Scholar 

  • Chen H, Jiang W (2014) Application of high-throughput sequencing in understanding human oral microbiome related with health and disease. Front Microbiol 5:6

    Google Scholar 

  • Chen Y, Xu Z, Hu H, Hu Y, Hao Z, Jiang Y, Chen B (2013) Responses of ammonia-oxidizing bacteria and archaea to nitrogen fertilization and precipitation increment in a typical temperate steppe in Inner Mongolia. Appl Soil Ecol 68:36–45

    Google Scholar 

  • Chen D, Mi J, Chu P, Cheng J, Zhang L, Pan Q (2015) Patterns and drivers of soil microbial communities along a precipitation gradient on the Mongolian plateau. Landsc Ecol 30(9):1669–1682

    Google Scholar 

  • Cleveland CC, Nemergut DR, Schmidt SK, Townsend AR (2007) Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry 82:229–240

    CAS  Google Scholar 

  • Daniel RM, Curran MP (1981) A method for the determination of nitrate reductase. J Biochem Biophys Methods 4:131–132

    PubMed  CAS  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    PubMed  CAS  Google Scholar 

  • De'Ath G (2002) Multivariate regression trees: a new technique for modeling species–environment relationships. Ecology 83:1105–1117

    Google Scholar 

  • Degens BP, Schipper LA, Sparling GP, Vojvodic-Vukovic M (2000) Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities. Soil Biol Biochem 32:189–196

    CAS  Google Scholar 

  • Deng Q, Hui D, Dennis S, Reddy KC (2017) Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition: a meta-analysis. Glob Ecol Biogeogr 26:713–728

    Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environmen Microbiol 72(7):5069–5072

    CAS  Google Scholar 

  • Ding K, Zhong L, Xin XP, Xu ZH, Kang XM, Liu WJ, Rui YC, Jiang LL, Tang L, Wang YF (2015) Effect of grazing on the abundance of functional genes associated with N cycling in three types of grassland in Inner Mongolia. J Soils Sediments 15:683–693

    Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461

    PubMed  CAS  Google Scholar 

  • Evans S, Wallenstein M (2012) Soil microbial community response to drying and rewetting stress: does historical precipitation regime matter? Biogeochemistry 109:101–116

    Google Scholar 

  • Everard K, Seabloom EW, Harpole WS, de Mazancourt C (2010) Plant water use affects competition for nitrogen: why drought favors invasive species in California. Am Nat 175:85–97

    PubMed  Google Scholar 

  • Fang C, Ye J, Gong Y, Pei J, Yuan Z, Xie C, Zhu Y, Yu Y (2017) Seasonal responses of soil respiration to warming and nitrogen addition in a semi-arid alfalfa-pasture of the loess plateau, China. Sci Total Environ 590-591:729–738

    PubMed  CAS  Google Scholar 

  • Felsmann K, Baudis M, Gimbel K, Kayler ZE, Ellerbrock R, Bruehlheide H et al (2015) Soil bacterial community structure responses to precipitation reduction and Forest Management in Forest Ecosystems across Germany. PLoS One 10(4):e0122539. https://doi.org/10.1371/journal.pone.0122539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC (2009) Global patterns in belowground communities. Ecol Lett 12:1238–1249

    PubMed  Google Scholar 

  • Fierer N, Leff JW, Adamsc BJ, Nielsend UN, Bates ST, Lauberb CL, Owens S, Gilbert JA, Wallh DH, Caporaso JG (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci U S A 109(52):21390–21395

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fontainea S, Mariottib A, Abbadiea L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837–843

    Google Scholar 

  • Fry EL, Manning P, Macdonald C, Hasegawa S, Palma AD, Power SA, Singh BK (2016) Shifts in microbial communities do not explain the response of grassland ecosystem function to plant functional composition and rainfall change. Soil Biol Biochem 99:199–210

    Google Scholar 

  • García Palacios P, Vandegehuchte ML, Shaw EA, Dam M, Post KH, Ramirez KS, Sylvain ZA, de Tomasel CM, Wall DH (2015) Are there links between responses of soil microbes and ecosystem functioning to elevated CO2, N deposition and warming? A global perspective 21:1590–1600

    Google Scholar 

  • Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312(5778):1355–1359

    PubMed  PubMed Central  CAS  Google Scholar 

  • Goordial J, Davila A, Greer CW, Cannam R, DiRuggiero J, McKay CP, Whyte LG (2017) Comparative activity and functional ecology of permafrost soils and lithic niches in a hyper-arid polar desert. Environmen Microbiol 19(2):443–458

    CAS  Google Scholar 

  • Gordon H, Haygarth PM, Bardgett RD (2008) Drying and rewetting effects on soil microbial community composition and nutrient leaching. Soil Biol Biochem 40(2):302–311

    CAS  Google Scholar 

  • Grizzle H, Robertson TR, Van Gestel NC, Tissue DT (2010) Microbial functional diversity profiles in response to simulated nitrogen deposition and variable precipitation in the Chihuahuan Desert. Big bend National Park, TX, 94th ESA annual meeting

  • Hueso S, García C, Hernández T (2012) Severe drought conditions modify the microbial community structure, size and activity in amended and unamended soils. Soil Biol Biochem 50:167–173

    CAS  Google Scholar 

  • Huson DH, Mitra S, Ruscheweyh HJ, Weber N, Schuster SC (2011) Integrative analysis of environmental sequences using MEGAN4. Genome Res 21(9):1552–1560

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N (2009) A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J 3:442–453

    PubMed  PubMed Central  CAS  Google Scholar 

  • Koyama A, Wallenstein MD, Simpson RT (2014) Soil bacterial community composition altered by increased nutrient availability in Arctic tundra soils. Front Microbiol 5:1–16

    Google Scholar 

  • Krauss M, Krause H, Spangler S, Kandeler E, Behrens S, Kappler A, Mäder P, Gattinger A (2017) Tillage system affects fertilizer-induced nitrous oxide emissions. Biol Fertil Soils 53:49–59

    CAS  Google Scholar 

  • Kurola J, Salkinoja-Salonen M, Aarnio T, Hultman J, Romantschuk M (2005) Activity, diversity and population size of ammonia-oxidising bacteria in oil-contaminated landfarming soil. FEMS Microbiol Lett 250:33–38

    PubMed  CAS  Google Scholar 

  • Laua JA, Lennona JT (2012) Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1202319109

  • Leff JW, Jones SE, Prober SM, Barberán A, Borer ET, Firn JL, Harpole WS, Hobbie SE, Hofmockel KS, Knops JMH, McCulley RL, La Pierre K, Risch AC, Seabloom EW, Schütz M, Steenbock C, Stevens CJ, Fierer N (2015) Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc Natl Acad Sci U S A 112(35):10967–10972

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge

    Google Scholar 

  • Liu WX, Xu WH, Han Y, Wang CH, Wan SQ (2007) Responses of microbial biomass and respiration of soil to topography, burning, and nitrogen fertilization in a temperate steppe. Biol Fertil Soils 44:259–268

    Google Scholar 

  • Liu W, Zhang Z, Wan S (2009) Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Glob Chang Biol 15:184–195

    Google Scholar 

  • Liu T, Xu ZZ, Hou YH, Zhou GS (2016) Effects of warming and changing precipitation rates on soil respiration over two years in a desert steppe of northern China. Plant Soil 400:15–27

    CAS  Google Scholar 

  • Ma Q, Yu WT, Shen SM, Zhou H, Jiang ZS, Xu YG (2010) Effects of fertilization on nutrient budget and nitrogen use efficiency of farmland soil under different precipitations in northeastern China. Nutr Cycl Agroecosyst 88:315–327

    CAS  Google Scholar 

  • Ma W, Jiang S, Assemien F, Qin M, Ma B, Xie Z, Liu Y, Feng H, Du G, Ma X, Roux XL (2016) Response of microbial functional groups involved in soil N cycle to N, P and NP fertilization in Tibetan alpine meadows. Soil Biol Biochem 101:195–206

    CAS  Google Scholar 

  • Ma Q, Liu X, Li Y, Li Y, Yu H, Qi M, Zhou G, Xu Z (2019) Nitrogen deposition magnifies the sensitivity of desert steppe plant communities to large changes in precipitation. J Ecol DOI. https://doi.org/10.1111/1365-2745.13264

  • Magoc T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mao YJ, Yannarell AC, Davis SC, Mackie RI (2013) Impact of different bioenergy crops on N-cycling bacterial and archaeal communities in soil. Environ Microbiol 15:928–942

    PubMed  CAS  Google Scholar 

  • McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82(1):290–297

    Google Scholar 

  • McHugh TA, Schwartz E (2014) Changes in plant community composition and reduced precipitation have limited effects on the structure of soil bacterial and fungal communities present in a semiarid grassland. Plant Soil 388:175e186

    Google Scholar 

  • Meier CL, Bowman WD (2008) Links between plant litter chemistry, species diversity, and below-ground ecosystem function. Proc Natl Acad Sci U S A 105:19780–19785

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mikola J, Setala H, Virkajarvi P, Saarijarvi K, Ilmarinen K, Voigt W, Vestberg M (2009) Defoliation and patchy nutrient return drive grazing effects on plant and soil properties in a dairy cow pasture. Ecol Monogr 79:221–244

    Google Scholar 

  • Min W, Guo H, Zhang W, Zhou G, Ma L, Jun Y, Hou Z (2016) Irrigation water salinity and N fertilization: effects on ammonia oxidizer abundance, enzyme activity and cotton growth in a drip irrigated cotton field. J Integr Agric 15(5):1121–1131

    CAS  Google Scholar 

  • Nannipieri P, Ceccanti B, Cervelli S, Matarese E (1980) Extraction of phosphatase, urease, proteases, organic carbon and nitrogen from soil. Soil Sci Soc Am J 44:1011–1016

    CAS  Google Scholar 

  • Nemergut DR, Townsend AR, Sattin SR, Freeman KR, Fierer N, Neff JC, Bowman WD, Schadt CW, Weintraub MN, Schmidt SK (2008) The effects of chronic nitrogen fertilization on alpine tundra soil microbial communities: implications for carbon and nitrogen cycling. Environ Microbiol 10(11):3093–3105

    PubMed  CAS  Google Scholar 

  • Pajares S, Bohannan BJM (2016) Ecology of nitrogen fixing, nitrifying, and denitrifying microorganisms in tropical forest soils. Front Microbiol 7:1045

    PubMed  PubMed Central  Google Scholar 

  • Pan H, Liu H, Liu Y, Zhang Q, Luo Y, Liu X, Liu Y, Xu J, Di H, Li Y (2018) Understanding the relationships between grazing intensity and the distribution of nitrifying communities in grassland soils. Sci Total Environ 634:1157–1164

    PubMed  CAS  Google Scholar 

  • Park DH, Zeikus JG (2002) Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl Microbiol Biotechnology 59:58–61

    CAS  Google Scholar 

  • Philippot L, Andersson SGE, Battin TJ, Prosser JI, Schimel JP, Whitman WB, Hallin S (2010) The ecological coherence of high bacterial taxonomic ranks. Nat Rev Microbiol 8:523–529

    PubMed  CAS  Google Scholar 

  • Placella SA, Brodie EL, Firestone MK (2012) Rainfall-induced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial groups. Proc Natl Acad Sci U S A 109(27):10931–10936

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ramirez KS, Lauber CL, Knight R, Bradford MA, Fierer N (2010) Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems. Ecology 91:3463–3470

    PubMed  Google Scholar 

  • Ramirez K, Craine JM, Fierer N (2012) Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob Chang Biol 18:1918–1927

    Google Scholar 

  • Rey T, Dumas B (2017) Plenty is no plague: Streptomyces Symbiosis with crops. Trends Plant Sci 22:30–37

    PubMed  CAS  Google Scholar 

  • Rodrigues JLM, Pellizari VH, Mueller R, Baek K, Jesus ED, Paula FS, Mirza B, Hamaoui GS, Tsai SM, Feigl B, Tiedje JM, Bohannan BJM, Nusslein K (2013) Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proc Natl Acad Sci U S A 110:988–993

    PubMed  CAS  Google Scholar 

  • Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351

    PubMed  Google Scholar 

  • Sardans J, Peñuelas J, Estiarte M (2008) Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland. Appl Soil Ecol 39:223–235

    Google Scholar 

  • Schimel DS, Braswell BH, McKeown R, Ojima DS, Parton WJ, Pulliam W (1996) Climate and nitrogen controls on the geography and timescales of terrestrial biogeochemical cycling. Glob Biogeochem Cycles 10:677e692

    Google Scholar 

  • Shade A, Peter H, Allison SD, Baho DL, Berga M, Bürgmann H, Huber DH, Langenheder S, Lennon JT, Martiny JBH, Matulich KL, Schmidt TM, Handelsman J (2012) Fundamentals of microbial community resistance and resilience. Front Microbiol 3:1–19

    Google Scholar 

  • She W, Bai Y, Zhang Y, Qin S, Feng W, Sun Y, Zheng J, Wu B (2018) Resource availability drives responses of soil microbial communities to short-term precipitation and nitrogen addition in a desert Shrubland. Front Microbiol 9:186. https://doi.org/10.3389/fmicb.2018.00186

    Article  PubMed  PubMed Central  Google Scholar 

  • Simkin SM, Allen EB, Bowman WD, Clark CM, Belnap J, Brooks ML, Cade BS, Collins SL, Geiser LH, Gilliam FS (2016) Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States. Proc Natl Acad Sci U S A 113:4086–4091

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sorensen PO, Germino MJ, Feris KP (2013) Microbial community responses to 17 years of altered precipitation are seasonally dependent and coupled to co-varying effects of water content on vegetation and soil C. Soil Biol Biochem 64:155–163

    CAS  Google Scholar 

  • Sponseller RA (2007) Precipitation pulses and soil CO2 flux in a Sonoran Desert ecosystem. Glob Chang Biol 13:426–436

    Google Scholar 

  • Sun Y, Shen J, Zhang C, Zhang L, Bai W, Fang Y, He J (2018) Responses of soil microbial community to nitrogen fertilizer and precipitation regimes in a semi-arid steppe. J Soils Sediments 18:762–774

    CAS  Google Scholar 

  • Team RC (2016) R: a language and environment for statistical computing. R Development Core Team, Vienna

    Google Scholar 

  • Thion C, Prosser JI, Notes A (2014) Differential response of nonadapted ammonia-oxidising archaea and bacteria to drying–rewetting stress. FEMS Microbiol Ecol 90:380–389

    PubMed  CAS  Google Scholar 

  • van Kruistum H, Bodelier PLE, Ho A, Meima-Franke M, Veraart AJ (2018) Resistance and recovery of methane-oxidizing communities depends on stress regime and history. A Microcosm Study Front Microbiol 9:1714. https://doi.org/10.3389/fmicb.2018.01714

    Article  PubMed  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson D (1987) An extraction method for measuring microbial biomass carbon. Soil Biol Biochem 19:703–707

    CAS  Google Scholar 

  • Vitouseki PM, Cassman K, Cleveland C, Crews T, Field CB, Martinellis L, Rastetter EB, Sprent JT (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57(58):1–45

    Google Scholar 

  • Wang Z, Hou X, Schellenberg MP, Qin Y, Yun X, Wei Z, Jiang C, Wang Y (2014) Different responses of plant species to deferment of sheep grazing in a desert steppe of Inner Mongolia, China. Rangel J 36:583–592

    Google Scholar 

  • Wang Z, Li Y, Hao XY, Zhao M, Han GD (2015) Response of plant community coverage to simulated warming and nitrogen addition in a desert steppe in northern China. Ecol Res 30:605–614

    CAS  Google Scholar 

  • Wang Q, Liu Y, Zhang C, Zhang L, Han L, Shen J, He J (2017) Responses of soil nitrous oxide production and abundances and composition of associated microbial communities to nitrogen and water amendment. Biol Fertil Soils 53:601–611

    CAS  Google Scholar 

  • Wang H, Liu S, Zhang X, Mao Q, Li X, You Y, Wang J, Zheng M, Zhang W, Lu X, Mo J (2018) Nitrogen addition reduces soil bacterial richness, while phosphorus addition alters community composition in an old-growth N-rich tropical forest in southern China. Soil Biol Biochem 127:22–30

    CAS  Google Scholar 

  • Wang Z, Mckenna TP, Schellenberg MP, Tang SM, Zhang YJ, Ta N, Na R, Wang H (2019) Soil respiration response to alterations in precipitation and nitrogen addition in a desert steppe in northern China. Sci Total Environ 688:231–242

    PubMed  CAS  Google Scholar 

  • Warton DI, Wright ST, Wang Y (2012) Distance-based multivariate analyses confound location and dispersion effects. Methods Ecol Evol 3(1):89–101

    Google Scholar 

  • Wei M, Guo H, Zhang W, Zhou G, Ma L, Ye J, Hou Z (2016) Irrigation water salinity and N fertilization: effects on ammonia oxidizer abundance, enzyme activity and cotton growth in a drip irrigated cotton field. J integrative Agriculture 15(5):1121–1131

    Google Scholar 

  • White JR, Nagarajan N, Pop M (2009) Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol 5(4)

  • Wieder WR, Bonan GB, Allison SD (2013) Global soil carbon projections are improved by modelling microbial processes. Nat Clim Chang 3:909–912

    CAS  Google Scholar 

  • Xu Z, Ren HY, Li MH, van Ruijven J, Han XG, Wan SQ et al (2015) Environmental changes drive the temporal stability of semi-arid natural grasslands through altering species asynchrony. J Ecol 103:1308–1316

    Google Scholar 

  • Ying J, Li X, Wang N, Lan Z, He J, Bai Y (2017) Contrasting effects of nitrogen forms and soil pH on ammonia oxidizing microorganisms and their responses to long-term nitrogen fertilization in a typical steppe ecosystem. Soil Biol Biochem 107:10–18

    CAS  Google Scholar 

  • Yuan X, Knelman JE, Gasarch E, Wang D, Nemergut DR, Seastedt TR (2016) Plant community and soil chemistry responses to long-term nitrogen inputs drive changes in alpine bacterial communities. Ecology 97(6):1543–1554

    PubMed  Google Scholar 

  • Zaura E, Keijser BJF, Huse SM, Crielaard W (2009) Defining the healthy "core microbiome" of oral microbial communities. BMC Microbiol 9:12

    Google Scholar 

  • Zhang XM, Liu W, Schloter M, Zhang GM, Chen QS, Huang JH, Li LH, Elser JJ, Han XX (2013) Response of the abundance of key soil microbial nitrogen-cycling genes to multi-factorial global changes. PLoS One 8(10):e76500. https://doi.org/10.1371/journal.pone.0076500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang XM, Wei HW, Chen QS, Han XG (2014) The counteractive effects of nitrogen addition and watering on soil bacterial communities in a steppe ecosystem. Soil Biol Biochem 72:26–34

    CAS  Google Scholar 

  • Zhang NL, Wan SQ, Guo J, Han G, Gutknecht J, Schmid B, Yu L, Liu W, Bi J, Wang Z, Ma K (2015) Precipitation modifies the effects of warming and nitrogen addition on soil microbial communities in northern Chinese grasslands. Soil Biol Biochem 89:12–23

    CAS  Google Scholar 

  • Zhang X, Tian Y, Shi H, He N, Wen X, Yu Q, Zheng C, Sun X, Qiu W (2016) Responses of soil hydrolytic enzymes, ammonia-oxidizing bacteria and archaea to nitrogen applications in a temperate grassland in Inner Mongolia. Scientific Reports 6:32791. https://doi.org/10.1038/srep32791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng S, Bian H, Quan Q, Xu L, Chen Z, He N (2018) Effect of nitrogen and acid deposition on soil respiration in a temperate forest in China. Geoderma 329:82–90

    CAS  Google Scholar 

  • Zhong L, Du R, Ding K, Kang X, Li FY, Bowatte S, Hoogendoorn CJ, Wang Y, Rui Y, Jiang L, Wang S (2014) Effects of grazing on N2O production potential and abundance of nitrifying and denitrifying microbial communities in meadow-steppe grassland in northern China. Soil Biol Biochem 69:1–10

    CAS  Google Scholar 

  • Zolla G, Badri DV, Bakker MG, Manter DK, Vivanco JM (2013) Soil microbiomes vary in their ability to confer drought tolerance to Arabidopsis. Appl Soil Ecol 68:1–9

    Google Scholar 

Download references

Acknowledgements

We thank Xiangjun Yun, Shixian Sun, and many others for setting up the experiments. This study was financially supported by the Program of the National Natural Science Foundation of China (41601269, 31770542), the National Natural Science Foundation of Inner Mongolia, China (2019MS3001), the Program of the National Natural Science Foundation of China and USA (31761123001-1) and the Central Public-Interest Scientific Institution Basal Research Fund (Grant no. 1610332018006, 1610332015020, and 1610332016006). This was a key project of the Science and Technology Ministry of Inner Mongolia entitled “Grass and Livestock Resource-Saving Production System and Sustainable Development Mode of Ecologically Vulnerable Areas” ([2018]1351).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ke Jin or Hai Wang.

Additional information

Responsible Editor: Paul Bodelier.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 51 kb)

Fig. S1

The effects of N additions and altered precipitation on bacterial alpha diversity using the Chao 1 richness index (a), Shannon–Wiener index (b), and Simpson’s diversity index (c) in the control (CK), decreased precipitation (DP), increased precipitation (IP), N addition (CN), decreased precipitation plus N addition (DN), and increased precipitation plus N addition (IN) treatments. Values represent mean ± standard error (n = 4). (PNG 82 kb)

High Resolution Image (TIF 188 kb)

Fig. S2

Multivariate regression tree analysis of bacterial alpha diversity indices (Chao1 richness estimator index, Shannon diversity index, and the Simpson index) and soil physicochemical variables. Bars plotted under each cluster represent the bacterial alpha diversity. The distribution patterns of bacterial diversity value represent the difference of bacterial alpha diversity among each split. Treatment names and the number of soil samples included in the analysis are shown under each bar plot. (PNG 87 kb)

Fig. S3

Structural equation models showing the direct and indirect effects on bacterial microbial community structure under N addition (a), decreased precipitation (DP) (b) and increased precipitation (IP) (c) on soil microbial community composition through affecting abiotic and biotic factors. Solid arrows indicate positive relationships and arrows indicate negative relationships. The thickness of solid and dashed arrows represents significant (P < 0.05, marked *; P < 0.01, marked **; P < 0.001, marked *** in the figure) and non-significant (P > 0.05) paths. Values associated with arrows represent standardized path coefficients. The abbreviations of the explanatory variables are as follows: SW, soil water content; SR, plant species richness number; ANPP: plant aboveground net primary productivity; pH, soil pH value; TN, soil total nitrogen content. (PNG 166 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Na, R., Koziol, L. et al. Response of bacterial communities and plant-mediated soil processes to nitrogen deposition and precipitation in a desert steppe. Plant Soil 448, 277–297 (2020). https://doi.org/10.1007/s11104-020-04424-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-020-04424-4

Keywords

Navigation