Skip to main content
Log in

Landscape context mediates the relationship between plant functional traits and decomposition

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

It has been well demonstrated that several interacting endogenous and exogenous factors influence decomposition. However, teasing apart the direct and indirect effects of these factors to predict decomposition patterns in heterogenous landscapes remains a key challenge.

Methods

At 157 locations in a temperate forest, we measured decomposition of a standard substrate (filter paper) over two years, the landscape context in which decomposition took place, and the functional composition of the woody species that contributed leaf litter to the forest floor where litter bags were placed. We tested for direct and indirect effects of landscape context and direct effects of forest functional composition on decay using structural equation modelling.

Results

We found that landscape context had direct effects on decay and indirect effects on decay via its influence on the functional composition of the surrounding forest. Forest functional composition also had direct effects on decay, but these effects decreased or disappeared completely over time. Moreover, community weighted mean trait values were better predictors of decay than functional dispersion of leaf traits, and leaf nitrogen content and carbon content were better predictors of decay than leaf dry matter content or leaf toughness.

Conclusions

Our results highlight the importance of an integrative approach that examines the direct and indirect effects of multiple factors for understanding and predicting decomposition patterns across heterogenous landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449. https://doi.org/10.2307/3546886

    Article  Google Scholar 

  • Anderson-Teixeira KJ, Davies SJ, Bennett AC, Gonzalez-Akre EB, Muller-Landau HC, Joseph Wright S, Abu Salim K, Almeyda Zambrano AM, Alonso A, Baltzer JL, Basset Y, Bourg NA, Broadbent EN, Brockelman WY, Bunyavejchewin S, Burslem DFRP, Butt N, Cao M, Cardenas D, Chuyong GB, Clay K, Cordell S, Dattaraja HS, Deng X, Detto M, du X, Duque A, Erikson DL, Ewango CEN, Fischer GA, Fletcher C, Foster RB, Giardina CP, Gilbert GS, Gunatilleke N, Gunatilleke S, Hao Z, Hargrove WW, Hart TB, Hau BCH, He F, Hoffman FM, Howe RW, Hubbell SP, Inman-Narahari FM, Jansen PA, Jiang M, Johnson DJ, Kanzaki M, Kassim AR, Kenfack D, Kibet S, Kinnaird MF, Korte L, Kral K, Kumar J, Larson AJ, Li Y, Li X, Liu S, Lum SKY, Lutz JA, Ma K, Maddalena DM, Makana JR, Malhi Y, Marthews T, Mat Serudin R, McMahon SM, McShea WJ, Memiaghe HR, Mi X, Mizuno T, Morecroft M, Myers JA, Novotny V, de Oliveira AA, Ong PS, Orwig DA, Ostertag R, den Ouden J, Parker GG, Phillips RP, Sack L, Sainge MN, Sang W, Sri-ngernyuang K, Sukumar R, Sun IF, Sungpalee W, Suresh HS, Tan S, Thomas SC, Thomas DW, Thompson J, Turner BL, Uriarte M, Valencia R, Vallejo MI, Vicentini A, Vrška T, Wang X, Wang X, Weiblen G, Wolf A, Xu H, Yap S, Zimmerman J (2015) CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob Chang Biol 21:528–549. https://doi.org/10.1111/gcb.12712

    Article  PubMed  Google Scholar 

  • Bakker MA, Carreno-Rocabado G, Poorter L (2011) Leaf economics traits predict litter decomposition of tropical plants and differ among land use types. Funct Ecol 25:473–483. https://doi.org/10.1111/j.1365-2435.2010.01802.x

    Article  Google Scholar 

  • Bardgett RD, Shine A (1999) Linkages between plant litter diversity, soil microbial biomass and ecosystem function in temperate grasslands. Soil Biol Biochem 31:317–321. https://doi.org/10.1016/s0038-0717(98)00121-7

    Article  CAS  Google Scholar 

  • Bardgett RD, Wardle DA (2010) Aboveground-belowground linkages: biotic interactions, ecosystem processes, and global change. Oxford University Press, Oxford

    Google Scholar 

  • Bradford MA, Warren II RJ, Baldrian P, Crowther TW, Maynard DS, Oldfield EE, Wieder WR, Wood SA, King JR (2014) Climate fails to predict wood decomposition at regional scales. Nat Clim Chang 4:625–630. https://doi.org/10.1038/nclimate2251

    Article  CAS  Google Scholar 

  • Brose U, Hillebrand H (2016) Biodiversity and ecosystem functioning in dynamic landscapes. The Royal Society

  • Burnham KP, Anderson DR (2004) Multimodel inference - understanding AIC and BIC in model selection. Sociol Methods Res 33:261–304. https://doi.org/10.1177/0049124104268644

    Article  Google Scholar 

  • Cadotte MW, Carscadden K, Mirotchnick N (2011) Beyond species: functional diversity and the maintenance of ecological processes and services. J Appl Ecol 48:1079–1087. https://doi.org/10.1111/j.1365-2664.2011.02048.x

    Article  Google Scholar 

  • Chadwick DR, Ineson P, Woods C, Piearce TG (1998) Decomposition of Pinus sylvestris litter in litter bags: influence of underlying native litter layer. Soil Biol Biochem 30:47–55

    Article  CAS  Google Scholar 

  • Chapin FS, Matson PA, Mooney HA (2002) Principles of terrestrial ecosystem ecology. Springer-Verlag, New York

    Google Scholar 

  • Chiang JM, Spasojevic MJ, Muller-Landau HC, Sun IF, Lin Y, Su SH, Chen ZS, Chen CT, Swenson NG, McEwan RW (2016) Functional composition drives ecosystem function through multiple mechanisms in a broadleaved subtropical forest. Oecologia 182:829–840. https://doi.org/10.1007/s00442-016-3717-z

    Article  PubMed  Google Scholar 

  • Cornwell WK, Ackerly DD (2009) Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol Monogr 79:109–126

    Article  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Díaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071. https://doi.org/10.1111/j.1461-0248.2008.01219.x

    Article  Google Scholar 

  • Diaz S et al (2004) The plant traits that drive ecosystems: evidence from three continents. J Veg Sci 15:295–304

    Article  Google Scholar 

  • Dwyer LM, Merriam G (1981) Influence of topographic heterogeneity on deciduous litter decomposition. Oikos 37:228–237. https://doi.org/10.2307/3544470

    Article  Google Scholar 

  • Fierer N, Craine JM, McLauchlan K, Schimel JP (2005) Litter quality and the temperature sensitivity of decomposition. Ecology 86:320–326. https://doi.org/10.1890/04-1254

    Article  Google Scholar 

  • Freschet GT, Aerts R, Cornelissen JHC (2012) A plant economics spectrum of litter decomposability. Funct Ecol 26:56–65. https://doi.org/10.1111/j.1365-2435.2011.01913.x

    Article  Google Scholar 

  • Garcia-Palacios P, McKie BG, Handa IT, Frainer A, Hattenschwiler S (2016) The importance of litter traits and decomposers for litter decomposition: a comparison of aquatic and terrestrial ecosystems within and across biomes. Funct Ecol 30:819–829. https://doi.org/10.1111/1365-2435.12589

    Article  Google Scholar 

  • Garcia-Palacios P, Shaw EA, Wall DH, Hattenschwiler S (2017) Contrasting mass-ratio vs. niche complementarity effects on litter C and N loss during decomposition along a regional climatic gradient. J Ecol 105:968–978. https://doi.org/10.1111/1365-2745.12730

    Article  CAS  Google Scholar 

  • Garnier E, Cortez J, Billès G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint JP (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecology 85:2630–2637

    Article  Google Scholar 

  • Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos 104:230–246. https://doi.org/10.1111/j.0030-1299.2004.12738.x

    Article  Google Scholar 

  • Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hattenschwiler S (2010) Diversity meets decomposition. Trends Ecol Evol 25:372–380

    Article  PubMed  Google Scholar 

  • Grace JB, Bollen KA (2005) Interpreting the results from multiple regression and structural equation models. Bull Ecol Soc Am 86:283–295

    Article  Google Scholar 

  • Grace JB, Anderson TM, Seabloom EW, Borer ET, Adler PB, Harpole WS, Hautier Y, Hillebrand H, Lind EM, Pärtel M, Bakker JD, Buckley YM, Crawley MJ, Damschen EI, Davies KF, Fay PA, Firn J, Gruner DS, Hector A, Knops JMH, MacDougall AS, Melbourne BA, Morgan JW, Orrock JL, Prober SM, Smith MD (2016) Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529:390. https://doi.org/10.1038/nature16524

    Article  CAS  PubMed  Google Scholar 

  • Grime JP (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J Ecol 86:902–910

    Article  Google Scholar 

  • Hampe CL (1984) A description of species composition, Population Structures, and Spatial Patterns in a Missouri Oak-Hickory Forest

  • Handa IT, Aerts R, Berendse F, Berg MP, Bruder A, Butenschoen O, Chauvet E, Gessner MO, Jabiol J, Makkonen M, McKie BG, Malmqvist B, Peeters ETHM, Scheu S, Schmid B, van Ruijven J, Vos VCA, Hättenschwiler S (2014) Consequences of biodiversity loss for litter decomposition across biomes. Nature 509:218–21+. https://doi.org/10.1038/nature13247

    Article  CAS  PubMed  Google Scholar 

  • Hattenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition interrestrial ecosystems. In: Annual Review of Ecology Evolution and Systematics, vol 36. Annual Review of Ecology Evolution and Systematics pp 191–218. https://doi.org/10.1146/annurev.ecolsys.36.112904.151932

  • Hobbie SE (1996) Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol Monogr 66:503–522. https://doi.org/10.2307/2963492

    Article  Google Scholar 

  • Hobbie SE (2005) Contrasting effects of substrate and fertilizer nitrogen on the early stages of litter decomposition. Ecosystems 8:644–656. https://doi.org/10.1007/s10021-003-0110-7

    Article  CAS  Google Scholar 

  • Hooper D et al (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • Jackrel SL, Wootton JT (2015) Cascading effects of induced terrestrial plant defences on aquatic and terrestrial ecosystem function. Proc R Soc B Biol Sci 282:20142522. https://doi.org/10.1098/rspb.2014.2522

    Article  Google Scholar 

  • Kaspari M, Garcia MN, Harms KE, Santana M, Wright SJ, Yavitt JB (2008) Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecol Lett 11:35–43. https://doi.org/10.1111/j.1461-0248.2007.01124.x

    Article  PubMed  Google Scholar 

  • Kattge J et al (2011) TRY–a global database of plant traits. Glob Chang Biol 17:2905–2935

    Article  PubMed Central  Google Scholar 

  • Kline RB (2010) Principles and practice of structural equation modeling. Guilford Press, New York

    Google Scholar 

  • Knorr M, Frey SD, Curtis PS (2005) Nitrogen additions and litter decomposition: a meta-analysis. Ecology 86:3252–3257. https://doi.org/10.1890/05-0150

    Article  Google Scholar 

  • Kucera CL (1959) Weathering characteristics of deciduous leaf litter. Ecology 40:485–487. https://doi.org/10.2307/1929768

    Article  Google Scholar 

  • Kuebbing SE, Maynard DS, Bradford MA (2018) Linking functional diversity and ecosystem processes: a framework for using functional diversity metrics to predict the ecosystem impact of functionally unique species. J Ecol 106:687–698. https://doi.org/10.1111/1365-2745.12835

    Article  Google Scholar 

  • Laliberte E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305

    Article  PubMed  Google Scholar 

  • Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the holy grail. Funct Ecol 16:545–556

    Article  Google Scholar 

  • Lavorel S, Grigulis K (2012) How fundamental plant functional trait relationships scale-up to trade-offs and synergies in ecosystem services. J Ecol 100:128–140. https://doi.org/10.1111/j.1365-2745.2011.01914.x

    Article  Google Scholar 

  • Legendre P, Mi X, Ren H, Ma K, Yu M, Sun IF, He F (2009) Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology 90:663–674. https://doi.org/10.1890/07-1880.1

    Article  PubMed  Google Scholar 

  • Li QL, Moorhead DL, DeForest JL, Henderson R, Chen JQ, Jensen R (2009) Mixed litter decomposition in a managed Missouri Ozark forest ecosystem. For Ecol Manag 257:688–694. https://doi.org/10.1016/j.foreco.2008.09.043

    Article  Google Scholar 

  • Lin GG, Zeng DH (2018) Functional identity rather than functional diversity or species richness controls litter mixture decomposition in a subtropical forest. Plant Soil 428:179–193. https://doi.org/10.1007/s11104-018-3669-7

    Article  CAS  Google Scholar 

  • Maitner BS, Boyle B, Casler N, Condit R, Donoghue J II, Durán SM, Guaderrama D, Hinchliff CE, Jørgensen PM, Kraft NJB, McGill B, Merow C, Morueta-Holme N, Peet RK, Sandel B, Schildhauer M, Smith SA, Svenning JC, Thiers B, Violle C, Wiser S, Enquist BJ (2018) The bien r package: a tool to access the botanical information and ecology network (BIEN) database. Methods Ecol Evol 9:373–379

    Article  Google Scholar 

  • Matulich KL, Weihe C, Allison SD, Amend AS, Berlemont R, Goulden ML, Kimball S, Martiny AC, Martiny JBH (2015) Temporal variation overshadows the response of leaf litter microbial communities to simulated global change. ISME J 9:2477–2489. https://doi.org/10.1038/ismej.2015.58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCune B, Grace J (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach, OR

  • Meier CL, Bowman WD (2008a) Links between plant litter chemistry, species diversity, and below-ground ecosystem function. Proc Natl Acad Sci U S A 105:19780–19785. https://doi.org/10.1073/pnas.0805600105

    Article  PubMed  PubMed Central  Google Scholar 

  • Meier CL, Bowman WD (2008b) Phenolic-rich leaf carbon fractions differentially influence microbial respiration and plant growth. Oecologia 158:95–107. https://doi.org/10.1007/s00442-008-1124-9

    Article  PubMed  Google Scholar 

  • Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626

    Article  CAS  Google Scholar 

  • Midgley MG, Brzostek E, Phillips RP (2015) Decay rates of leaf litters from arbuscular mycorrhizal trees are more sensitive to soil effects than litters from ectomycorrhizal trees. J Ecol 103:1454–1463. https://doi.org/10.1111/1365-2745.12467

    Article  Google Scholar 

  • Mokany K, Ash J, Roxburgh S (2008) Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland. J Ecol 96:884–893. https://doi.org/10.1111/j.1365-2745.2008.01395.x

    Article  Google Scholar 

  • Mori AS, Isbell F, Seidl R (2018) β-Diversity, community assembly, and ecosystem functioning. Trends Ecol Evol 33:549–564

    Article  Google Scholar 

  • Nilsson M-C, Wardle DA, Dahlberg A (1999) Effects of plant litter species composition and diversity on the boreal forest plant-soil system. Oikos 86:16–26

    Article  Google Scholar 

  • Olear HA, Seastedt TR (1994) Landscape patterns of litter decomposition in alpine tundra. Oecologia 99:95–101. https://doi.org/10.1007/bf00317088

    Article  CAS  Google Scholar 

  • Olson JS (1963) Energy-storage and balance of producers and decomposers in ecological-systems. Ecology 44:322-& https://doi.org/10.2307/1932179

  • Pietsch KA, Ogle K, Cornelissen JHC, Cornwell WK, Bönisch G, Craine JM, Jackson BG, Kattge J, Peltzer DA, Penuelas J, Reich PB, Wardle DA, Weedon JT, Wright IJ, Zanne AE, Wirth C (2014) Global relationship of wood and leaf litter decomposability: the role of functional traits within and across plant organs. Glob Ecol Biogeogr 23:1046–1057. https://doi.org/10.1111/geb.12172

    Article  Google Scholar 

  • Powers JS, Salute S (2011) Macro- and micronutrient effects on decomposition of leaf litter from two tropical tree species: inferences from a short-term laboratory incubation. Plant Soil 346:245–257. https://doi.org/10.1007/s11104-011-0815-x

    Article  CAS  Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Reich PB, Walters MB, Ellsworth DS (1997) From tropics to tundra: global convergence in plant functioning. Proc Natl Acad Sci U S A 94:13730–13734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rochow JJ (1974) Litter fall relations in a Missouri forest. Oikos 25:80–85. https://doi.org/10.2307/3543548

    Article  Google Scholar 

  • Rosseel Y (2012) Lavaan: an R package for structural equation modeling. J Stat Softw 48:1–36

    Article  Google Scholar 

  • Santiago LS (2007) Extending the leaf economics spectrum to decomposition: evidence from a tropical forest. Ecology 88:1126–1131. https://doi.org/10.1890/06-1841

    Article  PubMed  Google Scholar 

  • Spasojevic MJ, Suding KN (2012) Inferring community assembly mechanisms from functional diversity patterns: the importance of multiple assembly processes. J Ecol 100:652–661

    Article  Google Scholar 

  • Spasojevic MJ, Yablon EA, Oberle B, Myers JA (2014) Ontogenetic trait variation influences tree community assembly across environmental gradients. Ecosphere 5:129. https://doi.org/10.1890/es14-000159.1

    Article  Google Scholar 

  • Spasojevic MJ, Turner BL, Myers JA (2016) When does intraspecific trait variation contribute to functional beta-diversity? J Ecol 104:487–496

    Article  Google Scholar 

  • Stoler AB, Burke DJ, Relyea RA (2016) Litter chemistry and chemical diversity drive ecosystem processes in forest ponds. Ecology 97:1783–1795. https://doi.org/10.1890/15-1786.1

    Article  PubMed  Google Scholar 

  • Suding KN, Goldstein LJ (2008) Testing the holy grail framework: using functional traits to predict ecosystem change. New Phytol 180:559–562

    Article  PubMed  Google Scholar 

  • Suding KN et al (2008) Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob Chang Biol 14:1125–1140. https://doi.org/10.1111/j.1365-2486.2008.01557.x

    Article  Google Scholar 

  • Szefer P, Carmona CP, Chmel K, Konečná M, Libra M, Molem K, Novotný V, Segar ST, Švamberková E, Topliceanu TS, Lepš J (2017) Determinants of litter decomposition rates in a tropical forest: functional traits, phylogeny and ecological succession. Oikos 126:1101–1111

    Article  Google Scholar 

  • Talbot JM, Treseder KK (2012) Interactions among lignin, cellulose, and nitrogen drive litter chemistry-decay relationships. Ecology 93:345–354

    Article  PubMed  Google Scholar 

  • Tardif A, Shipley B (2013) Using the biomass-ratio and idiosyncratic hypotheses to predict mixed-species litter decomposition. Ann Bot 111:135–141. https://doi.org/10.1093/aob/mcs241

    Article  PubMed  Google Scholar 

  • Tardif A, Shipley B, Bloor JMG, Soussana JF (2014) Can the biomass-ratio hypothesis predict mixed-species litter decomposition along a climatic gradient? Ann Bot 113:843–850. https://doi.org/10.1093/aob/mct304

    Article  PubMed  PubMed Central  Google Scholar 

  • Tilman D (1997) Community invasibility, recruitment limitation, and grassland biodiversity. Ecology 78:81–92

    Article  Google Scholar 

  • Tilman D, Isbell F, Cowles JM (2014) Biodiversity and ecosystem functioning. In: Futuyma DJ (ed) Annual review of ecology, evolution, and systematics, Vol 45, vol 45. Annual review of ecology evolution and systematics, vol 45, pp 471–493. https://doi.org/10.1146/annurev-ecolsys-120213-091917

    Chapter  Google Scholar 

  • Tylianakis JM, Rand TA, Kahmen A, Klein A-M, Buchmann N, Perner J, Tscharntke T (2008) Resource heterogeneity moderates the biodiversity-function relationship in real world ecosystems. PLoS Biol 6:e122

    Article  CAS  PubMed Central  Google Scholar 

  • Vitousek PM (1998) Foliar and litter nutrients, nutrient resorption, and decomposition in Hawaiian Metrosideros polymorpha. Ecosystems 1:401–407

    Article  CAS  Google Scholar 

  • Voriskova J, Baldrian P (2013) Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J 7:477–486. https://doi.org/10.1038/ismej.2012.116

    Article  CAS  PubMed  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  CAS  PubMed  Google Scholar 

  • Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst 33:125–159. https://doi.org/10.1146/annurev.ecolysis.33.010802.150452

    Article  Google Scholar 

  • Zanne AE, Oberle B, Dunham KM, Milo AM, Walton ML, Young DF (2015) A deteriorating state of affairs: how endogenous and exogenous factors determine plant decay rates. J Ecol 103:1421–1431. https://doi.org/10.1111/1365-2745.12474

    Article  CAS  Google Scholar 

  • Zimmerman M, Wagner WL (1979) A description of the woody vegetation of oak-hickory forest in the northern Ozark highlands. Bull Torrey Bot Club 106:117–122

    Article  Google Scholar 

  • Zukswert JM, Prescott CE (2017) Relationships among leaf functional traits, litter traits, and mass loss during early phases of leaf litter decomposition in 12 woody plant species. Oecologia 185:305–316. https://doi.org/10.1007/s00442-017-3951-z

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Maranda Walton for assistance with data collection, the Tyson Research Center staff for providing logistical support, and the more than 100 high school students, undergraduate students, and researchers that have contributed to the Tyson Research Center Plot (TRCP). Financial support was provided by the International Center for Advanced Renewable Energy and Sustainability (I-CARES) at Washington University in St. Louis, the National Science Foundation (DEB 1144084; DEB 1256788; DEB 1557094), the Smithsonian Center for Tropical Forest Science-Forest Global Earth Observatory (CTFS-ForestGEO) Grants Program, and the Tyson Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko J. Spasojevic.

Additional information

Responsible Editor: Cindy Prescott.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Figure S1

(PNG 1297 kb)

High Resolution (TIFF 1853 kb)

Figure S2

(JPG 690 kb)

ESM 1

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spasojevic, M.J., Harline, K., Stein, C. et al. Landscape context mediates the relationship between plant functional traits and decomposition. Plant Soil 438, 377–391 (2019). https://doi.org/10.1007/s11104-019-04009-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-019-04009-w

Keywords

Navigation