Skip to main content
Log in

Integrated genomic and transcriptomic insights into the two-component high-affinity nitrate transporters in allotetraploid rapeseed

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

The two-component high-affinity nitrate (NO3-) transport system (THATS) proteins (NRT2/NAR2) play key roles in the efficient nitrogen (N) uptake and transport under N limitations. We aimed at uncovering the core THATS gene(s) regulating N use efficiency (NUE) in allotetraploid rapeseed (Brassica napus L.).

Methods

Genomic information, high-throughput transcriptome sequencing and gene co-expression network were integrated to identify and characterize the core THATS genes.

Results

We identified 17 BnaNRT2 and eight BnaNAR2.1 homologs spanning across the rapeseed genome. Copy number and gene presence/absence variations of BnaNRT2s/BnaNAR2.1 s, undergoing strong purifying selection, occurred. The over-representation of Dof, MYB and WRKY cis-regulatory elements and the enrichment of CpG islands, and protein phosphorylation sites indicated the importance of transcriptional and epigenetic regulation in the BnaNRT2 activities, respectively. qRT-PCR assays and high-throughput RNA-seq revealed that both BnaNRT2s and BnaNAR2.1 s were expressed preferentially in the roots; and they showed significantly differential expression under different N forms or different levels of NO3- supply. A gene co-expression network identified BnaC8.NRT2.1a and BnaC2.NAR2.1 as the core THATS genes.

Conclusions

The core THATS members can serve as elite gene resources for crop NUE improvement. The transcriptomics-assisted gene co-expression network analysis provides novel insights regarding the rapid identification of central members within large gene families of plant species with complex genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

CNV:

Copy number variation

CRE:

cis-acting regulatory elements

HATS:

High-affinity transport system

MFS:

Major facilitator superfamily

MYA:

Million years ago

N:

Nitrogen

NAR:

Nitrate-assimilation related

NNP:

Nitrate/nitrite porter

NRT:

Nitrate transporter

NO3 - :

Nitrate

NUE:

Nitrogen use efficiency

PAV:

Presence/absence variation

qRT-PCR:

Quantitative reverse-transcription polymerase chain reaction

TF:

Transcription factor

THATS:

Two-component high-affinity NO3- transport system

References

  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bayer PE, Hurgobin B, Golicz AA et al (2017) Assembly and comparison of two closely related Brassica napus genomes. Plant Biotechnol J 15:1602–1610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beck T, Hall MN (1999) The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402:689–692

    Article  PubMed  CAS  Google Scholar 

  • Blackshaw R, Johnson E, Gan YT, May W, McAndrew D, Barthet V, McDonald T, Wispinski D (2011) Alternative oilseed crops for biodiesel feedstock on the Canadian prairies. Can J Plant Sci 91:889–896

    Article  Google Scholar 

  • Blanc G, Hokamp K, Wolfe KH (2003) A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res 13:137–144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S, Brunak S (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4:1633–1649

    Article  PubMed  CAS  Google Scholar 

  • Britto DT, Kronzucker HJ (2002) NH4 + toxicity in higher plants: a critical review. J Plant Physiol 159:567–584

    Article  CAS  Google Scholar 

  • Cai C, Wang JY, Zhu YG, Shen QR, Li B, Tong YP, Li ZS (2008) Gene structure and expression of the high-affinity nitrate transport system in rice roots. J Integr Plant Biol 50:443–451

    Article  PubMed  CAS  Google Scholar 

  • Cerezo M, Tillard P, Filleur S, Muños S, Daniel-Vedele F, Gojon A (2001) Major alterations of the regulation of root NO3 - uptake are associated with the mutation of Nrt2.1 and Nrt2.2 genes in Arabidopsis. Plant Physiol 127:262–271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chakrabarti S, Bryant SH, Panchenko AR (2007) Functional specificity lies within the properties and evolutionary changes of amino acids. J Mol Biol 373:801–810

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chalhoub B, Denoeud F, Liu SY et al (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Zhang Y, Tan Y, Zhang M, Zhu L, Xu GH, Fan XR (2016) Agronomic nitrogen-use efficiency of rice can be increased by driving OsNRT2.1 expression with the OsNAR2.1 promoter. Plant Biotechnol J 14:1705–1715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng F, Wu J, Fang L, Wang XW (2012) Syntenic gene analysis between Brassica rapa and other Brassicaceae species. Front Plant Sci 3:198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chopin F, Orsel M, Dorbe MF, Chardon F, Truong HN, Miller AJ, Krapp A, Daniel-vedele F (2007) The Arabidopsis ATNRT2.7 nitrate transporter controls nitrate content in seeds. Plant Cell 19:1590–1602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cooper TG (2002) Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: Connecting the dots. FEMS Microbiol Rev 26:223–238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39:W155–W159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dechorgnat J, Nguyen CT, Armengaud P, Jossier M, Diatloff E, Filleur S, Daniel-Vedele F (2011) From the soil to the seeds: the long journey of nitrate in plants. J Exp Bot 62:1349–1359

    Article  PubMed  CAS  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. P Natl Acad Sci USA 95:14863–14868

    Article  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O, Brunak S, Heijne GV, Nielse H (2007) Locating proteins in the cell using TargetP, SignalP, and related tools. Nat Protoc 2:953–971

    Article  PubMed  CAS  Google Scholar 

  • Engelsberger WR, Schulze WX (2012) Nitrate and ammonium lead to distinct global dynamic phosphorylation patterns when resupplied to nitrogen-starved Arabidopsis seedlings. Plant J 69:978–995

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Faure-Rabasse S, Le Deunff E, Lainé P, Macduff JH, Ourry A (2002) Effects of nitrate pulses on BnNRT1 and BnNRT2 genes: mRNA levels and nitrate influx rates in relation to the duration of N deprivation in Brassica napus L. J Exp Bot 53:1711–1721

    Article  PubMed  CAS  Google Scholar 

  • Feng HM, Yan M, Fan XR, Li BZ, Shen QR, Miller AJ, Xu GH (2011) Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status. J Exp Bot 62:2319–2332

    Article  PubMed  CAS  Google Scholar 

  • Filleur S, Dorbe MF, Cerezo M, Orsel M, Granier F, Gojon A, Daniel-Vedele F (2001) An Arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake. FEBS Lett 489:220–224

    Article  PubMed  CAS  Google Scholar 

  • Forde BG (2000) Nitrate transporters in plants: Structure, function and regulation. BBA-Biomembranes 1465:219–235

    Article  PubMed  CAS  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. (In) John M. Walker (ed): The Proteomics Protocols Handbook, Humana Press, pp. 571–607

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186

    Article  PubMed  CAS  Google Scholar 

  • Grant CA, Bailey LD (1993) Fertility management in canola production. Can J Plant Sci 73:651–670

    Article  CAS  Google Scholar 

  • Gu X, Zou Y, Su Z, Huang W, Zhou Z, Arendsee A, Zeng Y (2013) An update of DIVERGE software for functional divergence analysis of protein family. Mol Biol Evol 30:1713–1719

    Article  PubMed  CAS  Google Scholar 

  • Guruprasad K, Reddy BV, Pandit MW (1990) Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng 4:155–161

    Article  PubMed  CAS  Google Scholar 

  • Hamburger D, Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587

    Article  Google Scholar 

  • Han YL, Song HX, Liao Q et al (2016) Nitrogen use efficiency is mediated by vacuolar nitrate sequestration capacity in roots of Brassica napus. Plant Physiol 170:1684–1698

    PubMed  PubMed Central  CAS  Google Scholar 

  • Harrison RG, Bagajewicz MJ (2015) Predicting the solubility of recombinant proteins in Escherichia coli. Methods Mol Biol 1258:403–408

    Article  PubMed  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hofmann K, Stoffel W (1993) TMbase-A database of membrane spanning protein segments. Biol Chem Hoppe Seyler 374:166

    Google Scholar 

  • Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015a) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297

    Article  PubMed  Google Scholar 

  • Hu B, Wang W, Ou S et al (2015b) Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat Genet 47:834–838

    Article  PubMed  CAS  Google Scholar 

  • Hua YP, Feng YN, Zhou T, Xu FS (2017) Genome-scale mRNA transcriptomic insights into the responses of oilseed rape (Brassica napus L.) to varying boron availabilities. Plant Soil 416:205–225

    Article  CAS  Google Scholar 

  • Hudson D, Guevara D, Yaish MW, Hannam C, Long N, Clarke JD, Bi YM, Rothstein SJ (2011) GNC and CGA1 modulate chlorophyll biosynthesis and glutamate synthase (GLU1/Fd-GOGAT) expression in Arabidopsis. PLoS One 6:e26765

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Imamura S, Kanesaki Y, Ohnuma M, Inouye T, Sekine Y, Fujiwara T, Kuroiwa T, Tanaka K (2009) R2R3-type MYB transcription factor, CmMYB1, is a central nitrogen assimilation regulator in Cyanidioschyzon merolae. P Natl Acad Sci USA 106:12548–12533

    Article  Google Scholar 

  • Jacquot A, Li Z, Gojon A, Schulze W, Lejay L (2017) Post-translational regulation of nitrogen transporters in plants and microorganisms. J Exp Bot 68:2567–2580

    Article  PubMed  CAS  Google Scholar 

  • Jargeat P, Rekangalt D, Verner M, Gay G, DeBaud J, Marmeisse R, Fraissinet-Tachet L (2003) Characterisation and expression analysis of a nitrate transporter and nitrite reductatse genes, two members of a gene cluster for nitrate assimilation from the symbiotic basidiomyctete Hebeloma cylindrosporum. Curr Genet 43:199–205

    PubMed  CAS  Google Scholar 

  • Jones P, Binns D, Chang H, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236–1240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Katayama H, Mori M, Kawamura Y, Tanaka T, Mori M, Hasegawa H (2009) Production and characterization of transgenic rice plants carrying a high-affinity nitrate transporter gene (OsNRT2.1). Breed Sci 59:237–243

    Article  CAS  Google Scholar 

  • Kiba T, Feria-Bourrellier AB, Lafouge F et al (2012) The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen-starved plants. Plant Cell 24:245–258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kohl M, Wiese S, Warscheid B (2011) Cytoscape: software for visualization and analysis of biological networks. Methods Mol Biol 696:291–303

    Article  PubMed  CAS  Google Scholar 

  • Kong H, Landherr LL, Frohlich MW, Leebens-Mack J, Ma H, de Pamphilis CW (2007) Patterns of gene duplication in the plant SKP1 gene family in angiosperms: evidence for multiple mechanisms of rapid gene birth. Plant J 50:873–885

    Article  PubMed  CAS  Google Scholar 

  • Konishi M, Yanagisawa S (2014) Emergence of a new step towards understanding the molecular mechanisms underlying nitrate-regulated gene expression. J Exp Bot 65:5589–5600

    Article  PubMed  CAS  Google Scholar 

  • Kotur Z, Glass AD (2015) A 150 kDa plasma membrane complex of AtNRT2.5 and AtNAR2.1 is the major contributor to constitutive high-affinity nitrate influx in Arabidopsis thaliana. Plant Cell Environ 38:1490–1502

    Article  PubMed  CAS  Google Scholar 

  • Kotur Z, Mackenzie N, Ramesh S, Tyerman SD, Kaiser BN, Glass AD (2012) Nitrate transport capacity of the Arabidopsis thaliana NRT2 family members and their interactions with AtNAR2.1. New Phytol 191:724–731

    Article  CAS  Google Scholar 

  • Krapp A, David LC, Chardin C, Girin T, Marmagne A, Leprince AS, Chaillou S, Ferrario-Méry S, Meyer C, Daniel-Vedele F (2014) Nitrate transport and signalling in Arabidopsis. J Exp Bot 65:789–798

    Article  PubMed  CAS  Google Scholar 

  • Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and clustal X version 2.0. Bioinformatics 23:2947–1948

    Article  PubMed  CAS  Google Scholar 

  • Léran S, Varala K, Boyer JC et al (2014) A unified nomenclature of Nitrate Transporter 1/Peptide Transporter family members in plants. Trends Plant Sci 19:5–9

    Article  PubMed  CAS  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lezhneva L, Kiba T, Feria-Bourrellier AB, Lafouge F, Boutet-Mercey S, Zoufan P, Sakakibara H, Daniel-Vedele F, Krapp A (2014) The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants. Plant J 80:230–241

    Article  PubMed  CAS  Google Scholar 

  • Li WB, Wang Y, Okamoto M, Crawford NM, Siddiqi MY, Glass AD (2007) Dissection of the AtNRT2.1:AtNRT2.2 inducible high-affinity nitrate transporter gene cluster. Plant Physiol 143:425–433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin IA, Zhao M, Ma J, Yu J, Huang S (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun 5:3930

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu XQ, Feng HM, Huang DM, Song MQ, Fan XR, Xu GH (2015) Two short sequences in OsNAR2.1 promoter are necessary for fully activating the nitrate induced gene expression in rice roots. Sci Rep-UK 5:11950

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔC T Method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Maillard A, Etienne P, Diquélou S, Trouverie J, Billard V, Yvin JC, Ourry A (2016) Nutrient deficiencies in Brassica napus modify the ionomic composition of plant tissues: a focus on cross-talk between molybdenum and other nutrients. J Exp Bot 67:5631–5641

    Article  PubMed  CAS  Google Scholar 

  • Marchler-Bauer A, Bo Y, Han L et al (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 45:D1

    Article  CAS  Google Scholar 

  • Marzluf GA (1997) Genetic regulation of nitrogen metabolism in the fungi. Microbiol Mol Biol Rev 61:17–32

    PubMed  PubMed Central  CAS  Google Scholar 

  • McAllister CH, Beatty PH, Good AG (2012) Engineering nitrogen use efficient crop plants: the current status. Plant Biotechnol J 10:1011–1025

    Article  PubMed  CAS  Google Scholar 

  • Meagher RB, McKinney EC, Vitale AV (1999) The evolution of new structures: clues from plant cytoskeletal genes. Trends Genet 15:278–284

    Article  PubMed  CAS  Google Scholar 

  • Menz J, Li Z, Schulze WX, Ludewig U (2016) Early nitrogen-deprivation responses in Arabidopsis roots reveal distinct differences on transcriptome and (phospho-) proteome levels between nitrate and ammonium nutrition. Plant J 88:717–734

    Article  PubMed  CAS  Google Scholar 

  • Nekrutenko A, Makova KD, Li WH (2002) The KA/KS ratio test for assessing the protein-coding potential of genomic regions: an empirical and simulation study. Genome Res 12:198–202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohno S (1999) Gene duplication and the uniqueness of vertebrate genomes circa 1970-1999. Semin Cell Dev Biol 10:517–522

    Article  PubMed  CAS  Google Scholar 

  • Okamoto M, Vidmar JJ, Glass ADM (2003) Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: responses to nitrate provision. Plant Cell Physiol 44:304–317

    Article  PubMed  CAS  Google Scholar 

  • Okamoto M, Kumar A, Li W, Wang Y, Siddiqi MY, Crawford NM, Glass AD (2006) High-affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2-like gene AtNRT3.1. Plant Physiol 140:1036–1046

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orsel M, Krapp A, Daniel-Vedele F (2002) Analysis of the NRT2 nitrate transporter family in Arabidopsis. structure and gene expression. Plant Physiol 129:886–896

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orsel M, Chopin F, Leleu O, Smith SJ, Krapp A, Daniel-Vedele F, Miller AJ (2006) Characterization of a two-component high-affinity nitrate uptake system in Arabidopsis. Physiology and protein-protein interaction. Plant Physiol 142:1304–1317

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parkin IA, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  PubMed  CAS  Google Scholar 

  • Plett D, Toubia J, Garnett T, Tester M, Kaiser BN, Baumann U (2010) Dichotomy in the NRT gene families of dicots and grass species. PLoS One 5:e15289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rathke GW, Christen O, Diepenbrock W (2005) Effects of nitrogen source and rate on productivity and quality of winter oilseed rape (Brassica napus L.) grown in different crop rotations. Field Crop Res 94:103–113

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542

    Article  PubMed  CAS  Google Scholar 

  • Sirohi G, Pandey BK, Deveshwar P, Giri J (2016) Emerging trends in epigenetic regulation of nutrient deficiency response in plants. Mol Biol 58:159–171

    CAS  Google Scholar 

  • Smith TF, Waterman MS (1987) Identification of common molecular subsequences. J Mol Biol 147:195–197

    Article  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang Z, Fan XR, Li Q, Feng HM, Miller AJ, Shen QR, Xu GH (2012) Knockdown of a rice stelar nitrate transporter alters long-distance translocation but not root influx. Plant Physiol 160:2052–2063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • ter Schure EG, van Riel NA, Verrips CT (2000) The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae. FEMS Microbiol Rev 24:67–83

    Article  PubMed  Google Scholar 

  • Tong YP, Zhou JJ, Li ZS, Miller AJ (2005) A two-component high-affinity nitrate uptake system in barley. Plant J 41:442–450

    Article  PubMed  CAS  Google Scholar 

  • Town CD, Cheung F, Maiti R, Crabtree J, Haas BJ, Wortman JR, Hine EE, Althoff R, Arbogast TS, Tallon LJ (2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 18:1348–1359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsay YF, Chiu CC, Tsai CB, Ho CH, Hsu PK (2007) Nitrate transporters and peptide transporters. FEBS Lett 581:2290–2300

    Article  PubMed  CAS  Google Scholar 

  • Wang DP, Zhang YB, Zhang Z, Zhu J, Yu J (2010) KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genomics Proteomics Bioinformatics 8:77–80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J-H, Bancroft I, Cheng F (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    Article  PubMed  CAS  Google Scholar 

  • Wang YY, Hsu PK, Tsay YF (2012) Uptake, allocation and signaling of nitrate. Trends Plant Sci 17:458–467

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Wu J, Liang J, Cheng F, Wang X (2015) Brassica database (BRAD) version 2.0: integrating and mining Brassicaceae species genomic resources. Database 2015:1–8

    Google Scholar 

  • Wang Q, Nian J, Xie X et al (2018) Genetic variations in ARE1 mediate grain yield by modulating nitrogen utilization in rice. Nat Commun 9:735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Widiez T, El-Kafafiel S, Girin T et al (2011) High nitrogen insensitive 9 (HNI9)-mediated systemic repression of root NO3 - uptake is associated with changes in histone methylation. P Natl Acad Sci USA 108:13329–13334

    Article  Google Scholar 

  • Wierzbicki AT, Haag JR, Pikaard CS (2008) Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell 135:635–648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wittkopp PJ, Kalay G (2011) Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat Rev Genet 6:59–69

    Google Scholar 

  • Wu Y, Yang W, Wei J, Yoon H, An G (2017) Transcription factor OsDOF18 controls ammonium uptake by inducing ammonium transporters in rice roots. Mol Cell 40:178–185

    CAS  Google Scholar 

  • Yan M, Fan XR, Feng HM, Miller AJ, Shen QR, Xu GH (2011) Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges. Plant Cell Environ 34:1360–1372

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa S (1995) A novel DNA-binding that may form a single zinc finger motif. Nucleic Acids Res 23:3403–3410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang Z, Nielsen R (2000) Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol 17:32–43

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Lai K, Tai P, Li W (1999) Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and other angiosperm lineages. J Mol Evol 48:597–604

    Article  PubMed  CAS  Google Scholar 

  • Yang HL, Liu J, Huang SM, Guo TT, Deng LB, Hua W (2014) Selection and evaluation of novel reference genes for quantitative reverse transcription PCR (qRT-PCR) based on genome and transcriptome data in Brassica napus L. Gene 538:113–122

    Article  PubMed  CAS  Google Scholar 

  • Zheng D, Han X, An YI, Guo H, Xia X, Yin W (2013) The nitrate transporter NRT2.1 functions in the ethylene response to nitrate deficiency in Arabidopsis. Plant Cell Environ 36:1328–1337

    Article  PubMed  CAS  Google Scholar 

  • Zhou JJ, Fernandez E, Galvan A, Miller AJ (2000a) A high-affinity nitrate transport system from Chlamydomonas requires two gene products. FEBS Lett 466:225–227

    Article  PubMed  CAS  Google Scholar 

  • Zhou JJ, Trueman LJ, Boorer KJ, Theodoulou FL, Forde BG, Miller AJ (2000b) A high-affinity fungal nitrate carrier with two transport mechanisms. J Biol Chem 275:39894–39899

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) Genevestigator. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We thank both Dr. Jianhua Zhang and Dr. Moxian Chen (The Chinese University of Hong Kong) for the manuscript polish. This study was financially supported in part, by the National Key R&D Program of China (2017YFD0200100, 2017YFD0200103); National Natural Science Foundation of China (Grant No.31101596, 31372130); Hunan Provincial Recruitment Program of Foreign Experts; and the National Oilseed Rape Production Technology System of China; “2011 Plan” supported by The Ministry of Education of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-hua Zhang.

Additional information

Responsible Editor: Ad C. Borstlap.

Highlights

We identified the core members of the two-component high-affinity nitrate transport system in allotetraploid rapeseed, which can serve as elite gene resources for nitrogen use efficiency enhancement in crops, and the transcriptomics-assisted gene co-expression network analysis provide reference regarding the rapid identification of central members within the large gene families in plant species with complex genomes.

Electronic supplementary material

ESM 1

(DOCX 62.1 kb)

ESM 2

(DOCX 1.69 mb)

ESM 3

(DOCX 202 kb)

ESM 4

(DOCX 1.17 mb)

ESM 5

(DOCX 564 kb)

ESM 6

(DOCX 370 kb)

ESM 7

(DOCX 2.40 mb)

ESM 8

(DOCX 108 kb)

ESM 9

(DOCX 19.0 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, Yp., Zhou, T., Song, Hx. et al. Integrated genomic and transcriptomic insights into the two-component high-affinity nitrate transporters in allotetraploid rapeseed. Plant Soil 427, 245–268 (2018). https://doi.org/10.1007/s11104-018-3652-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-018-3652-3

Keywords

Navigation