Skip to main content
Log in

Genome-scale mRNA transcriptomic insights into the responses of oilseed rape (Brassica napus L.) to varying boron availabilities

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Backgrounds and aims

Boron (B) is a micronutrient essential for plant normal growth and development. Brassica napus L., one of the leading oil-crop species, is extremely susceptible to deficient and excessive B stresses. Previous studies were concentrated only on the responses of plants to a single B stress only. Here, we aim to provide a comprehensive genome-scale mRNA transcriptomic response of Brassica napus to B deficiency and toxicity.

Methods

The genome-scale mRNA transcriptome was identified and characterized in the leaves and roots of B. napus exposed to B deficiency and toxicity using the digital gene expression (DGE) high-throughput sequencing platforms.

Results

Under both B deficiency and B toxicity, the biomasses, B contents and photosynthetic pigments of B. napus were significantly reduced whereas the anthocyanins were greatly increased. The DGE profiling revealed a total of 3798 and 3048 genes differentially expressed under B deficiency and toxicity, respectively. Transcriptional down- or up-regulation of the B transporter genes, including BnaBOR1s, BnaBOR2, BnaBOR4s and B channel genes, such as BnaNIPs, BnaTIPs and BnaPIPs, may be indispensable for B homeostasis through the molecular modulation of efficient B uptake, transport, distribution and compartmentation. Transcriptional regulation of hydrolytic enzymes and arabinogalactan-protein genes may contribute to the maintenance of cell wall structure and plasma membrane integrity. Transcriptional modulation of antioxidant enzyme genes was likely to balance the reactive oxygen species of plants under B deficiency and toxicity.

Conclusions

Our results provide comprehensive insights into the mRNA transcriptome of key components involved in the B homeostasis network in B. napus and enrich our understanding of the molecular mechanisms by which plants adapt to deficient and excessive B conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alves M, Francisco R, Martins I, Ricardo CPP (2006) Analysis of Lupinus albus leaf apoplastic proteins in response to boron deficiency. Plant Soil 279:1–11

    Article  CAS  Google Scholar 

  • Bell RW, Dell B (2008) Micronutrients for sustainable food, feed, fibre and bioenergy production. International Fertilizer Industry Association, Paris

    Google Scholar 

  • Bellaloui N, Brown PH, Dandekar AM (1999) Manipulation of in vivo sorbitol production alters boron uptake and transport in tobacco. Plant Physiol 119:735–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bienert GP, Bienert MD, Jahn TP, Boutry M, Chaumont F (2011) Solanaceae XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates. Plant J 66:306–317

    Article  CAS  PubMed  Google Scholar 

  • Blackshaw R, Johnson E, Gan YT, May W, McAndrew D, Barthet V, McDonald T, Wispinski D (2011) Alternative oilseed crops for biodiesel feedstock on the Canadian prairies. Can J Plant Sci 91:889–896

    Article  Google Scholar 

  • Blevins DG, Lukaszewski KM (1998) Boron in plant structure and function. Annu Rev Plant Biol 49:481–500

    Article  CAS  Google Scholar 

  • Brown PH, Bellaloui N, Hu H, Dandekar A (1999) Transgenically enhanced sorbitol synthesis facilitates phloem boron transport and increases tolerance of tobacco to boron deficiency. Plant Physiol 119:17–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown PH, Bellaloui N, Wimmer MA, Bassil ES, Ruiz J, Hu H, Pfeffer H, Dannel F, Römheld V (2002) Boron in plant biology. Plant Biol 4:205–223

    Article  CAS  Google Scholar 

  • Cakmak I, Kurz H, Marschner H (1995) Short-term effects of boron, germanium and high light intensity on membrane permeability in boron deficient leaves of sunflower. Physiol Plantarum 95:11–18

    Article  CAS  Google Scholar 

  • Camacho-Cristóbal JJ, Herrera-Rodríguez MB, Beato VM, Rexach N-GMT, Maldonado JM, González-Fontes A (2008) The expression of several cell wall-related genes in Arabidopsis roots is down-regulated under boron deficiency. Environ Exp Bot 63:351–358

    Article  Google Scholar 

  • Camacho-Cristóbal JJ, Martín-Rejano EM, Herrera-Rodríguez MB, Navarro-Gochicoa MT, Rexach J, González-Fontes A (2015) Boron deficiency inhibits root cell elongation via an ethylene/auxin/ROS-dependent pathway in Arabidopsis seedlings. J Exp Bot 66:3831–3840

    Article  PubMed  PubMed Central  Google Scholar 

  • Cañon P, Aquea F, Guardia A, Arce-Johnson P (2013) Functional characterization of Citrus macrophylla BOR1, as a boron transporter. Physiol Plantarum 149:329–339

    Google Scholar 

  • Cervilla LM, Blasco B, Rıos JJ, Romero L, Ruiz JM (2007) Oxidative stress and antioxidants in tomato (Solanum lycopersicum) plants subjected to boron toxicity. Ann Bot 100:747–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chalhoub B, Denoeud F, Liu SY et al (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953

    Article  CAS  PubMed  Google Scholar 

  • Cheng F, Liu SY, Wu J, Fang L, Sun SL, Liu B, Li PX, Hua W, Wang XW (2011) BRAD, the genetics and genomics database for Brassica plants. BMC Plant Biol 11:136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cosgrove DJ (1999) Enzymes and other agents that enhance cell wall extensibility. Plant Biol 50:391–417

    CAS  Google Scholar 

  • Danielson JÅ, Johanson U (2008) Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens. BMC Plant Biol 8:1

    Article  Google Scholar 

  • Deshmukh RK, Sonah H, Bélanger R (2016) Plant aquaporins: genome-wide identification, transcriptomics, proteomics, and advanced analytical tools. Front Plant Sci 7:1896

    Article  PubMed  PubMed Central  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. P Natl Acad Sci USA 95:14863–14868

    Article  CAS  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick KL, Reid RJ (2009) The involvement of aquaglyceroporins in transport of boron in barley roots. Plant Cell Environ 32:1357–1365

    Article  CAS  PubMed  Google Scholar 

  • Goldberg S (1997) Reactions of boron with soils. Plant Soil 193:35–48

    Article  CAS  Google Scholar 

  • Han S, Chen LS, Jiang HX, Smith BR, Yang LT, Xie CY (2008) Boron deficiency decreases growth and photosynthesis, and increases starch and hexoses in leaves of citrus seedlings. J Plant Physiol 165:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Harsh A, Sharma YK, Joshi U, Rampuria S, Singh G, Kumar S, Sharma R (2016) Effect of short-term heat stress on total sugars, proline and some antioxidant enzymes in moth bean (Vigna aconitifolia). Ann Agri Sci 61:57–64

    Google Scholar 

  • He YJ, Mao SS, Gao YL, Zhu LY, Wu DM, Cui YX, Li JN, Qian W (2016) Genome-wide identification and expression analysis of WRKY transcription factors under multiple stresses in Brassica napus. PLoS One 11:e0157558

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu H, Penn SG, Lebrilla CB, Brown PH (1997) Isolation and characterization of soluble B-complexes in higher plants. The mechanism of phloem mobility of boron. Plant Physiol 113:649–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua YP, Zhang DD, Zhou T, He ML, Ding GD, Shi L, Xu FS (2016a) Transcriptomics-assisted quantitative trait locus fine mapping for the rapid identification of a nodulin 26-like intrinsic protein gene regulating boron efficiency in allotetraploid rapeseed. Plant Cell Environ 39:1601–1618

    Article  CAS  PubMed  Google Scholar 

  • Hua YP, Zhou T, Ding GD, Yang QY, Shi L, Xu FS (2016b) Physiological, genomic and transcriptional diversity in responses to boron deficiency in rapeseed genotypes. J Exp Bot 67:5759–5784

    Article  Google Scholar 

  • Huang L, Bell RW, Dell B (2008) Evidence of phloem boron transport in response to interrupted boron supply in white lupin (Lupinus albus L. cv. Kiev mutant) at the reproductive stage. J Exp Bot 59:575–583

    Article  CAS  PubMed  Google Scholar 

  • Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjövall S, Fraysse L, Weig AR, Kjellbom P (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126:1358–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaldenhoff R, Fischer M (2006) Functional aquaporin diversity in plants. Biochim et Biophys Acta 1758:1134–1141

    Article  CAS  Google Scholar 

  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–D484

    Article  CAS  PubMed  Google Scholar 

  • Kasajima I, Ide Y, Hirai MY, Fujiwara T (2010) WRKY6 is involved in the response to boron deficiency in Arabidopsis thaliana. Physiol Plantarum 139:80–92

    Article  CAS  Google Scholar 

  • Kaur S, Nicolas ME, Ford R, Norton R, Taylor PWJ (2006) Physiological mechanisms of tolerance to high boron concentration in Brassica rapa. Funct Plant Biol 33:973–980

    Article  CAS  Google Scholar 

  • Kayıhan DS, Kayıhan C, Çiftçi YÖ (2016) Excess boron responsive regulations of antioxidative mechanism at physio-biochemical and molecular levels in Arabidopsis thaliana. Plant Physiol Bioch 109:337–345

    Article  Google Scholar 

  • Kobayashi M, Matoh T, Azuma J (1996) Two chains of rhamnogalacturonan II are cross-linked by borate-diol ester bonds in higher plant cell walls. Plant Physiol 110:1017–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi M, Kawakita K, Maeshima M, Doke N, Yoshioka H (2006) Subcellular localization of Strboh proteins and NADPH-dependent O2 -generating activity in potato tuber tissues. J Exp Bot 57:1373–1379

    Article  CAS  PubMed  Google Scholar 

  • Konsaeng S, Dell B, Rerkasem B (2005) A survey of woody tropical species for boron re-translocation. Plant Prod Sci 8:338–341

    Article  CAS  Google Scholar 

  • Landi M, Guidi L, Pardossi A, Tattini M, Gould KS (2014) Photo-protection by foliar anthocyanins mitigates effects of boron toxicity in sweet basil (Ocimum basilicum). Planta 240:941–953

    Article  CAS  PubMed  Google Scholar 

  • Leaungthitikanchana S, Fujibe T, Tanaka M, Wang S, Sotta N, Takano J, Fujiwara T (2013) Differential expression of three BOR1 genes corresponding to different genomes in response to boron conditions in hexaploid wheat (Triticum aestivum L.) Plant Cell Physiol 54:1056–1063

    Article  CAS  PubMed  Google Scholar 

  • Li T, Choi WG, Wallace IS, Baudry J, Roberts DM (2011) Arabidopsis thaliana NIP7;1: an anther-specific boric acid transporter of the aquaporin superfamily regulated by an unusual tyrosine in helix 2 of the transport pore. Biochemistry-US 50:6633–6641

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Buschmann C (2001) Chlorophylls and carotenoids: measurement and characterization by UV–VIS spectroscopy. In: Wrolstad RE, Acree TE, An H, Decker EA, Penner MH, Reid DS, Schwartz SJ, Shoemaker CF, Sporns P (eds) Current protocols in food analytical chemistry. Wiley, New York, pp F4.3.1–F4.3.8

    Google Scholar 

  • Liu GD, Wang RD, Liu LC, Wu LS, Jiang CC (2013) Cellular boron allocation and pectin composition in two citrus rootstock seedlings differing in boron–deficiency response. Plant Soil 370:555–565

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔC T method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mancinelli AL, Yang CPH, Lindquist P, Anderson OR, Rabino I (1975) Photocontrol of anthocyanin synthesis: III. The action of streptomycin on the synthesis of chlorophyll and antyocyanin. Plant Physiol 55:251–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Martínez-Cuenca MR, Martínez-Alcántara B, Quiñones A, Ruiz M, Iglesias DJ, Primo-Millo E, Forner-Giner MÁ (2015) Physiological and molecular responses to excess boron in Citrus macrophylla W. PLoS One 10:e0134372

    Article  PubMed  PubMed Central  Google Scholar 

  • Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624

    Article  CAS  PubMed  Google Scholar 

  • Mi HY, Lazareva-Ulitsky B, Loo R, KejariwalA VJ, Rabkin S, Guo N, Muruganujan A, Doremieux O, Campbell MJ, Kitano H, Thomas PD (2005) The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Res 33:D284–D288

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2016) ROS are good. Trends Plant Sci 1461:1–9

    Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Breusegem FV (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Miwa K, Fujiwara T (2010) Boron transport in plants: coordinated regulation of transporters. Ann Bot-London 105:1103–1108

    Article  CAS  Google Scholar 

  • Miwa K, Takano J, Omori H, Seki M, Shinozaki K, Fujiwara T (2007) Plants tolerant of high boron levels. Science 318:1417

    Article  CAS  PubMed  Google Scholar 

  • Miwa K, Wakuta S, Takada S, Ide K, Takano J, Naito S, Omori H, Matsunaga T, Fujiwara T (2013) Roles of BOR2, a boron exporter, in cross linking of rhamnogalacturonan II and root elongation under boron limitation in Arabidopsis. Plant Physio 16:1699–1709

    Article  Google Scholar 

  • Molassiotis A, Sotiropoulos T, Tanou G, Diamantidis G, Therios I (2006) Boron-induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM 9 (Malus domestica Borkh). Environ Exp Bot 56:54–62

    Article  CAS  Google Scholar 

  • Mosa KA, Kumar K, Chhikara S, Musante C, White JC, Dhankher OP (2016) Enhanced boron tolerance in plants mediated by bidirectional transport through plasma membrane intrinsic proteins. Sci Rep-UK: 6

  • Nable RO, Banuelos GS, Paull JG (1997) Boron toxicity. Plant Soil 198:181–198

    Article  Google Scholar 

  • Nakagawa Y, Hanaoka H, Kobayashi M, Miyoshi K, Miwa K, Fujiwara T (2007) Cell-type specificity of the expression of Os BOR1, a rice efflux boron transporter gene, is regulated in response to boron availability for efficient boron uptake and xylem loading. Plant Cell 19:2624–2635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oiwa Y, Kitayama K, Kobayashi M, Matoh T (2013) Boron deprivation immediately causes cell death in growing roots of Arabidopsis thaliana (L.) Soil Sci Plant Nutr 59:621–627

    Article  CAS  Google Scholar 

  • Pang YQ, Li LJ, Ren F, Lu PL, Wei PC, Cai JH, Xin LG, Zhang J, Chen J, Wang XJ (2010) Overexpression of the tonoplast aquaporin AtTIP5;1 conferred tolerance to boron toxicity in Arabidopsis. J Genet Genomics 37:389–397

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Castro R, Kasai K, Gainza-Cortés F, Ruiz-Lara S, Casaretto JA, Peña-Cortés H, Tapia J, Fujiwara T, González E (2012) VvBOR1, the grapevine ortholog of AtBOR1, encodes an efflux boron transporter that is differentially expressed throughout reproductive development of Vitis vinifera L. Plant Cell Physiol 53:485–494

    Article  PubMed  Google Scholar 

  • Rathke GW, Christen O, Diepenbrock W (2005) Effects of nitrogen source and rate on productivity and quality of winter oilseed rape (Brassica napus L.) grown in different crop rotations. Field Crops Res 94:103–113

    Article  Google Scholar 

  • Rosolem CA, Costa A (2000) Cotton growth and boron distribution in the plant as affected by a temporary deficiency of boron. J Plant Nutr 23:815–825

    Article  CAS  Google Scholar 

  • Sardar HS, Yang J, Showalter AM (2006) Molecular interactions of arabinogalactan proteins with cortical microtubules and F-actin in bright yellow-2 tobacco cultured cells. Plant Physiol 142:1469–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnurbusch T, Hayes J, Hrmova M, Baumann U, Ramesh SA, Tyerman SD, Langridge P, Sutton T (2010) Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2;1. Plant Physiol 153:1706–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shorrocks VM (1997) The occurrence and correction of boron deficiency. Plant Soil 193:121–148

    Article  CAS  Google Scholar 

  • Takano J, Noguchi K, Yasumori M, Kobayashi M, Gajdos Z, Miwa K, Fujiwara T (2002) Arabidopsis boron transporter for xylem loading. Nature 420:337–340

    Article  CAS  PubMed  Google Scholar 

  • Takano J, Miwa K, Yuan LX, Wirén NV, Fujiwara T (2005) Endocytosis and degradation of bor1, a boron transporter of Arabidopsis thaliana, regulated by boron availability. P Natl Acad Sci USA 102:12276–12281

    Article  CAS  Google Scholar 

  • Takano J, Wada M, Ludewig U, Schaaf G, von Wiren N, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18:1498–1509

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka M, Wallace IS, Takano J, Roberts DM, Fujiwara T (2008) NIP6;1 is a boric acid channel for preferential transport of boron to growing shoot tissues in Arabidopsis. Plant Cell 20:2860–2875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and cufflinks. Nat Protoc 7:562–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uraguchi S, Kato Y, Hanaoka H, Miwa K, Fujiwara T (2014) Generation of boron-deficiency-tolerant tomato by overexpressing an Arabidopsis thaliana borate transporter AtBOR1. Front Plant Sci 5:125

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang G, Romheld V, Li C, Bangerth F (2006) Involvement of auxin and CKs in boron deficiency induced changes in apical dominance of pea plants (Pisum sativum L.) J Plant Physiol 163:591–600

    Article  CAS  PubMed  Google Scholar 

  • Wang YH, Shi L, Cao XY, Xu FS (2007) Plant boron nutrition and boron fertilization in China. In: Xu FS, Goldbach HE, Brown PH, Bell RW, Fujiwara T, Hunt CD, Goldberg S, Shi L (eds) Advances in plant and animal boron nutrition. Springer Press, Dordrecht, pp 93–101

    Chapter  Google Scholar 

  • Warington K (1923) The effect of boric acid and borax on the broad bean and certain other plants. Ann Bot-Lodon 37:629–672

    Article  Google Scholar 

  • Xu WZ, Dai WT, Yan HL, Li S, Shen HL, Chen YS, Xu H, Sun YY, He ZY, Ma M (2015) Arabidopsis NIP3;1 plays an important role in arsenic uptake and root-to-shoot translocation under arsenite stress conditions. Mol Plant 8:722–733

    Article  CAS  PubMed  Google Scholar 

  • Zhang DD, Hua YP, Wang XH, Zhao H, Shi L, Xu FS (2014) A high density genetic map identifies a novel major QTL for boron efficiency in oilseed rape (Brassica napus L.) PLoS One 9:e112089

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao D, Oosterhuis DM (2003) Cotton growth and physiological responses to boron deficiency. J Plant Nutr 26:855–867

    Article  CAS  Google Scholar 

  • Zhou GF, Liu YZ, Sheng O, Wei QJ, Yang CQ, Peng SA (2014) Transcription profiles of boron-deficiency-responsive genes in citrus rootstock root by suppression subtractive hybridization and cDNA microarray. Front Plant Sci 5:795

    PubMed  Google Scholar 

  • Zhou T, Hua YP, Huang YP, Ding GD, Shi L, Xu FS (2016) Physiological and transcriptional analyses reveal differential phytohormone responses to boron deficiency in Brassica napus genotypes. Front Plant Sci 7:221

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 31572185 and 31372129) and the National Key Research and Development Program of China (Grant No. 2016YFD0100700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangsen Xu.

Additional information

Responsible Editor: Robert Reid.

Electronic supplementary material

ESM 1

(XLSX 25 kb)

ESM 2

(DOCX 1938 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, Y., Feng, Y., Zhou, T. et al. Genome-scale mRNA transcriptomic insights into the responses of oilseed rape (Brassica napus L.) to varying boron availabilities. Plant Soil 416, 205–225 (2017). https://doi.org/10.1007/s11104-017-3204-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3204-2

Keywords

Navigation