Skip to main content

Advertisement

Log in

Microorganisms reveal what plants do not: wheat growth and rhizosphere microbial communities after Azospirillum brasilense inoculation and nitrogen fertilization under field conditions

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Azospirillum brasilense is one of plant growth promoting bacteria used to improve plant growth and grain yield of cereal crops. The level of inoculation response is defined by complex plant-microorganism interactions, many of them still unknown. Thus, we evaluated both agronomic response and microbial ecology of wheat crop under A. brasilense inoculation and nitrogen fertilization at field conditions in order to improve inoculation efficiency.

Methods

Treatments were: control, nitrogen fertilization and inoculation with 40M and 42M strains. Functional and structural diversity of rhizosphere bacterial communities were evaluated by community-level physiological and terminal restriction fragment length polymorphism profiles. Besides, aerial biomass, grain yield and counts of microaerophilic diazotrophic rhizobacteria were determined.

Results

Plant ontogeny modified the number of culturable microaerophilic diazotrophic rhizobacteria. Although agronomic response did not show differences, plant ontogeny and the agricultural practices modified both physiology and genetic structure of rhizosphere microbial communities. Interestingly, these differences due to the treatments were observed at jointing stage but not at grain-filling stage of wheat.

Conclusions

Our results demonstrate how different management decisions can change plant- microorganism relationships. While wheat could not show differences between some agricultural treatments, under the soil surface microbial communities could show them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abril A, Biasutti C, Maich R, Dubbini L, Noe L (2006) Inoculación con Azospirillum spp. en la región semiárida-central de la Argentina: factores que afectan la colonización rizosférica. Ciencia Suelo 24:11–19

    Google Scholar 

  • Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci U S A 105:11512–11519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bashan Y, de-Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment. Adv Agron 108:77–136

    Article  CAS  Google Scholar 

  • Bastida F, Zsolnay A, Hernández T, García C (2008) Past, present and future of soil quality indices: A biological perspective. Geoderma 147:159–171

    Article  CAS  Google Scholar 

  • Bossio DA, Girvan MS, Verchot L, Bullimore J, Borelli T, Albrecht A, Scow KM, Ball AS, Pretty JN, Osborn AM (2005) Soil microbial community response to land use change in an agricultural landscape of Western Kenya. Microb Ecol 49:50–62

    Article  CAS  PubMed  Google Scholar 

  • van Bruggen AHC, Semenov AM (2000) In search of biological indicators for soil health and disease suppression. App Soil Ecol 15:13–24

    Article  Google Scholar 

  • Caballero-Mellado J, Onofre-Lemus J, Estrada-de los Santos P, Martínez-Aguilar L (2007) The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Appl Environ Microbiol 73:5308–5319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casanovas EM, Fasciglione G, Barassi CA (2015) Azospirillum spp. and related PGPRs inocula use in intensive agriculture. In: Cassán FD, Okon Y, Creus CM (eds) Handbook for Azospirillum: Technical Issues and Protocols. Springer, Berlin, pp 447–468

    Google Scholar 

  • Casaretto E, Labandera C (2008) Respuesta de maíz a la inoculación con Azospirillum. In: Cassán FC, García de Salamone IE (eds) Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina, Asociación Argentina de Microbiología, Buenos Aires, Argentina, pp. 261–268

  • Cassán FD, Díaz-Zorita M (2016) Azospirillum sp. in current agriculture: From the laboratory to the field. Soil Biol Bioch 103:117–130

    Article  Google Scholar 

  • Cassán FD, Okon Y, Creus MC (2015) Handbook for Azospirillum: Technical Issues and Protocols. Springer, Berlin

    Book  Google Scholar 

  • Conn VM, Franco CMM (2004) Analysis of the endophytic actinobacterial population in the roots of wheat (Triticum aestivum L.) by terminal restriction fragment length polymorphism and sequencing of 16S rRNA. Appl Environ Microbiol 70:1787–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cummings SP (2009) The application of plant growth promoting rhizobacteria (PGPR) in low input and organic cultivation of graminaceous crops; potential and problems. Environ Biot 5:43–50

    Google Scholar 

  • Den Herder G, Van Isterdael G, Beeckman T, De Smet I (2010) The roots of a new green revolution. Trends Plant Sci 15:600–607

    Article  Google Scholar 

  • Díaz-Zorita M, Fernández-Canigia MV, Bravo OA, Berger A, Satorre EH (2015) Field evaluation of extensive crops inoculated with Azospirillum sp. In: Cassán FD, Okon Y, Creus CM (eds) Handbook for Azospirillum: Technical Issues and Protocols. Springer, Berlin, pp 435–445

    Google Scholar 

  • Di Cello F, Bevivino A, Chiarini L, Fani R, Paffetti D, Tabacchioni S, Dalmastri C (1997) Biodiversity of a Burkholderia cepacia population isolated from the maize rhizosphere at different plant growth stages. Appl Environ Microbiol 63:4485–4493

    PubMed  PubMed Central  Google Scholar 

  • Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2011) InfoStat versión 2011. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina

  • Di Salvo LP, García de Salamone IE (2012) Evaluation of soil-microbial communities by their CLPP. Standardization of a laboratory technique to replace commercial available microplates. Austral Ecol 22:129–136

    Google Scholar 

  • Di Salvo LP, Silva E, Teixeira KR, Esquivel-Cote R, Pereyra MA, García de Salamone IE (2014) Physiological and biochemical characterization of Azospirillum brasilense strains commonly used as plant growth-promoting rhizobacteria. J Basic Microbiol 54:1310–1321

    Article  PubMed  Google Scholar 

  • Döbereiner J (1998) Isolation and identification of aerobic nitrogen-fixing bacteria from soil and plants. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic Press, California, pp 134–141

    Google Scholar 

  • Döbereiner J, Pedrosa F (1987) Nitrogen-fixing bacteria in non-leguminous crop plant. Spring, Michigan

    Google Scholar 

  • Dunbar J, Ticknor LO, Kuske CR (2001) Phylogenetic specificity and reproducibility and new method for analysis of terminal restriction fragment profiles of 16S rRNA genes from bacterial communities. Appl Environ Microbiol 67:190–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAOSTAT (2012) Food and Agricultural commodities production. http://faostat.fao.org/site/339/default.aspx

  • Ferrando L, Fernández Mañay J, Fernández Scavino A (2012) Molecular and culture-dependent analyses revealed similarities in the endophytic bacterial community composition of leaves from three rice (Oryza sativa) varieties. FEMS Microbiol Ecol 80:696–708

    Article  CAS  PubMed  Google Scholar 

  • Fuentes-Ramírez LE, Bustillos-Cristales R, Tapia-Hernández A, Jiménez-Salgado T, Wang ET, Martínez-Romero E, Caballero-Mellado J (2001) Novel nitrogen-fixing acetic acid bacteria, Gluconacetobacter johannae sp. nov. and Gluconacetobacter azotocaptans sp. nov., associated with coffee plants. Int J Syst Evol Microbiol 51:1305–1314

    Article  PubMed  Google Scholar 

  • Gamalero E, Glick BR (2011) Mechanisms used by plant growth-promoting bacteria. In: Maheshwari DK (ed) Bacteria in agrobiology: Plant nutrient management. Springer, Berlin, pp 17–46

  • García de Salamone IE (2012a) Use of soil microorganisms to improve plant growth and ecosystem sustainability. In: Caliskan M (ed) The molecular basis of plant genetic diversity. INTECH, Rijeka, Croatia, pp. 233–258. Open access: http://www.intechopen.com/articles/show/title/use-of-soil-microorganisms-to-improve-plant-growth-and-ecosystem-sustainability

  • García de Salamone IE (2012b) Microorganismos promotores del crecimiento vegetal. Informaciones Agronómicas de Hispanoamérica 5:12–16. http://www.ipni.net/publication/ia-lahp.nsf/0/C101526851953B09852579DD006C1A17/$FILE/3%20Art.pdf

  • García de Salamone IE, Döbereiner J (1996) Maize genotype effects on the response to Azospirillum inoculation. Biol Fert Soils 21:193–196

    Article  Google Scholar 

  • García de Salamone IE, Di Salvo LP, Escobar Ortega JS, Boa Sorte MP, Urquiaga S, Dos Santos Teixeira KR (2010) Field response of rice paddy crop to inoculation with Azospirillum: physiology of rhizosphere bacterial communities and the genetic diversity of endophytic bacteria in different parts of the plants. Plant Soil 336:351–362

    Article  Google Scholar 

  • García de Salamone IE, Funes JM, Di Salvo LP, Escobar Ortega JS, D'Auria F, Ferrando L, Fernandez Scavino A (2012) Inoculation of paddy rice with Azospirillum brasilense and Pseudomonas fluorescens: Impact of plant genotypes on the rhizosphere microbial communities and field crop production. Appl Soil Ecol 61:196–204

    Article  Google Scholar 

  • Germida JJ, Siciliano SD (2001) Taxonomic diversity of bacteria associated with the roots of modern, recent and ancient wheat cultivars. Biol Fert Soils 33:410–415

    Article  Google Scholar 

  • Gewin V (2010) An underground revolution. Nature 466:552–553

    Article  CAS  PubMed  Google Scholar 

  • Gillis M, Tran Van V, Bardin R, Goor M, Hebbar P, Willems A, Segers P, Kersters K, Heulin T, Fernandez MP (1995) Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnarniensis sp. nov. for N2-fixing isolates from rice in Vietnam. Int J Syst Bacteriol 45:274–289

    Article  CAS  Google Scholar 

  • Gil-Sotres F, Trasar-Cepeda C, Leiros MC, Seoane S (2005) Different approaches to evaluating soil quality using biochemical properties. Soil Biol Biochem 37:877–887

    Article  CAS  Google Scholar 

  • Gómez E, Garland J, Conti M (2004) Reproducibility in the response of soil bacterial community-level physiological profiles from a land use intensification gradient. Appl Soil Ecol 26:21–30

    Article  Google Scholar 

  • Grandy AS, Robertson GP, Thelen KD (2006) Do productivity and environmental trade-offs justify periodically cultivating no-till cropping systems? Agron J 98:1377–1383

    Article  CAS  Google Scholar 

  • Herschkovitz Y, Lerner A, Davidov Y, Rothballer M, Hartmann A, Okon Y, Jurkevitch E (2005) Inoculation with the plant-growth-promoting rhizobacterium Azospirillum brasilense causes little disturbance in the rhizosphere and rhizoplane of maize (Zea mays). Microb Ecol 50:277–288

    Article  CAS  PubMed  Google Scholar 

  • Hooper DU, Bignell DE, Brown VK, Brussard L, Dangerfield JM, Wall DH, Wardle DA, Coleman DC, Giller KE, Lavelle P, Van der Putten WH, De Ruiter PC, Rusek J, Silver WL, Tiedje JM, Wolters V (2000) Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks. Bioscience 50:1049–1061

    Article  Google Scholar 

  • Houlden A, Timms-Wilson TM, Day MJ, Bailey MJ (2008) Influence of plant development stage on microbial community structure and activity in the rhizosphere of three field crops. FEMS Microbiol Ecol 65:193–201

    Article  CAS  PubMed  Google Scholar 

  • Hungria M, Campo RJ, Souza EM, Pedrosa FO (2010) Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil 331:413–425

    Article  CAS  Google Scholar 

  • Karthikeyan N, Prasanna R, Nain L, Kaushik BD (2007) Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat. Eur J Soil Biol 43:23–30

    Article  CAS  Google Scholar 

  • Kazi N, Deaker R, Wilson N, Muhammad K, Trethowan R (2016) The response of wheat genotypes to inoculation with Azospirillum brasilense in the field. Field Crop Res 196:368–378

    Article  Google Scholar 

  • Kent AD, Triplett EW (2002) Microbial communities and their interactions in soil and rhizosphere ecosystems. Ann Rev Microbiol 56:211–236

    Article  CAS  Google Scholar 

  • Kobližek M, Béjà O, Bidigare RR, Cheristensen S, Benitez-Nelson B, Vetriani C, Kolber MK, Falkowski PG, Kolber ZS (2003) Isolation and characterization of Erythrobacter sp. strains from the upper ocean. Arch Microbiol 180:327–338

    Article  PubMed  Google Scholar 

  • Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H, Trevors JT (2004) Methods of studying soil microbial diversity. J Microbiol Meth 58:169–188

    Article  CAS  Google Scholar 

  • Li WJ, Xu P, Zhang LP, Tang SK, Cui XL, Mao PH, Xu LH, Schumann P, Stackebrandt E, Jiang CL (2003) Streptomonospora alba sp. nov., a novel halophilic actinomycete, and emended description of the genus Streptomonospora Cui et al. 2001. Int J Syst Evol Microbiol 53:1421–1425

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Rosencrantz K, Liesack W, Conrad R (2006) Structure and activity of bacterial community inhabiting rice roots and the rhizosphere. Environ Microbiol 8:1351–1360

    Article  CAS  PubMed  Google Scholar 

  • Lupwayi NZ, Rice WA, Clayton GW (1998) Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation. Soil Biol Biochem 30:1733–1741

    Article  CAS  Google Scholar 

  • de Man JC (1983) MPN tables, corrected. Eur J Appl Microbiol Biotech 17:301–305

    Article  Google Scholar 

  • Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. App Environ Microbiol 64:795–799

    CAS  Google Scholar 

  • Mendes LW, Kuramae EE, Navarrete AA, van Veen JA, Tsai SM (2014) Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J 8:1577–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendes LW, Tsai SM, Navarrete AA, de Hollander M, van Veen JA, Kuramae EE (2015) Soil-borne microbiome: linking diversity to function. Microb Ecol 70:255–265

    Article  CAS  PubMed  Google Scholar 

  • Miethling R, Wieland G, Backhaus H, Tebbe CC (2000) Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L33. Microb Ecol 41:43–56

    Article  Google Scholar 

  • Mills AL, Garland JL (2002) Application of physiological profiles to assess community properties. In: Hurst CJ, Crawford RL, Knudsen GR, McInerney MJ, Stenzenback LD (eds) Manual of environmental microbiology. ASM Press, Washington DC, pp 135–146

    Google Scholar 

  • Minz D, Ofek M (2011) Rhizosphere microorganisms. In: Rosenberg E, Gophna U (eds) Beneficial microorganisms in multicellular life forms. Springer, Verlag, pp 105–121

    Google Scholar 

  • Naiman AD, Latrónico A, García de Salamone IE (2009) Inoculation of wheat with Azospirillum brasilense and Pseudomonas fluorescens: impact on the production and culturable rhizosphere microflora. Eur J Soil Biol 45:44–51

    Article  Google Scholar 

  • Pedraza RO, Bellone CH, Carrizo de Bellone S, Fernandes Boa Sorte PM, Teixeira KRS (2009) Azospirillum inoculation and nitrogen fertilization effect on grain yield and on the diversity of endophytic bacteria in the phyllosphere of rice rainfed crop. Eur J Soil Biol 45:36–43

    Article  CAS  Google Scholar 

  • Peixoto RS, Coutinho HLC, Madari B, Machado PLOA, Rumjanek NG, Van Elsas JD, Seldin L, Rosado AS (2006) Soil aggregation and bacterial community structure as affected by tillage and cover cropping in the Brazilian Cerrados. Soil Till Res 90:16–28

    Article  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, Van der Putten W (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev 11:789–799

    CAS  Google Scholar 

  • Preston-Mafham J, Boddy L, Randerson PF (2002) Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles - a critique. FEMS Microbiol Ecol 42:1–14

    CAS  PubMed  Google Scholar 

  • Roesch LFW, Olivares FL, Passaglia LMP, Selbach PA, Saccol de Sá EL, Camargo FAO (2006) Characterization of diazotrophic bacteria associated with maize: effect of plant genotype, ontogeny and nitrogen-supply. World J Microb Biot 22:967–974

    Article  Google Scholar 

  • Saleem M, Moe LA (2014) Multitrophic microbial interactions for eco- and agro-biotechnological processes: theory and practice. Trends Biotechnol 32:529–537

    Article  CAS  PubMed  Google Scholar 

  • Sanguin H, Sarniguet A, Gazengel K, Moënne-Loccoz Y, Grundmann GL (2009) Rhizosphere bacterial communities associated with disease suppressiveness stages of take-all decline in wheat monoculture. New Phytol 184:694–707

    Article  CAS  PubMed  Google Scholar 

  • Sawamura H, Yamada M, Endo K, Soda S, Ishigaki T, Ike M (2010) Characterization of microorganisms at different landfill depths using carbon-utilization patterns and 16S rRNA gene based T-RFLP. J Biosci Bioeng 109:130–137

    Article  CAS  PubMed  Google Scholar 

  • Semmartin M, Di Bella C, García de Salamone IE (2010) Grazing-induced changes in plant species composition affect plant and soil properties of grassland mesocosms. Plant Soil 328:471–481

    Article  CAS  Google Scholar 

  • Shyu C, Soule T, Bent SJ, Foster JA, Forney LJ (2007) MiCA: A Web-Based Tool for the Analysis of Microbial Communities Based on Terminal-Restriction Fragment Length Polymorphisms of 16S and 18S rRNA Genes. J Microb Ecol 53:562–570

    Article  CAS  Google Scholar 

  • Sisti CPJ, Santos HP, Kochhann R, Alves BJR, Urquiaga S, Boddey RM (2004) Change in carbon and nitrogen stocks in soil under 13 years of conventional and zero tillage in southern Brazil. Soil Till Res 76:39–58

    Article  Google Scholar 

  • Smalla K, Oros-Sichler M, Milling A, Heuer H, Baumgarte S, Becker R, Neuber G, Kropf S, Ulrich A, Tebbe CC (2007) Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: Do the different methods provide similar results? J Microbiol Meth 69:470–479

    Article  CAS  Google Scholar 

  • Steddom K, Menge JA, Crowley D, Borneman J (2002) Effect of repetitive applications of the biocontrol bacterium Pseudomonas putida 06909-rif/nal on citrus soil microbial communities. Biol Control 92:857–862

    CAS  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  CAS  PubMed  Google Scholar 

  • Torsvik V, Øvreås L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245

    Article  CAS  PubMed  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, Van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Wang G, Jin J, Liu J, Zhang Q, Liu X (2009) Bacterial communities in soybean rhizosphere in response to soil type, soybean genotype, and their growth stage. Soil Biol Biochem 41:919–925

    Article  CAS  Google Scholar 

  • Xue D, Yao HY, Ge DY, Huang CY (2008) Soil microbial community structure in diverse land use systems: a comparative study using Biolog, DGGE, and PLFA analyses. Pedosphere 18:653–663

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by FONCYT 2008 PICT 1864 from the MINCyT, UBACyT project 20020090100255, Universidad de Buenos Aires (UBA) in Argentina. The authors received financial support from the collaborative projects PROMAI UBA and AUGM for travel expenses of L.P.D.S., L.F. and A.F.S. We are grateful to the agronomist Patricio Perdoménico and personal of “La Aurora”, Villa Moll, Buenos Aires, Argentina. We are also grateful to editors and anonymous reviewers for their comments and suggestions. We would like to dedicate this work to the memory of Dr. Katia RS Teixeira, Brazilian researcher of the EMBRAPA, Rio de Janeiro, Brazil, who always will be in our hearts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inés E. García de Salamone.

Additional information

Responsible Editor: Hans Lambers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Salvo, L.P., Ferrando, L., Fernández-Scavino, A. et al. Microorganisms reveal what plants do not: wheat growth and rhizosphere microbial communities after Azospirillum brasilense inoculation and nitrogen fertilization under field conditions. Plant Soil 424, 405–417 (2018). https://doi.org/10.1007/s11104-017-3548-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3548-7

Keywords

Navigation