Skip to main content
Log in

Embedded rock fragments affect alpine steppe plant growth, soil carbon and nitrogen in the northern Tibetan Plateau

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and Aims

Rock fragments within topsoil have important effects on soil properties and plant growth. This study mainly aimed to investigate the relationships between rock fragments, soil carbon (C) and nitrogen (N) densities and vegetation biomass in an alpine steppe.

Methods

Rock fragments, plant and soil samples were collected from four topographic positions (top, upper, lower, and bottom) on a hillslope.

Results

Volumetric rock fragment content within the 0–30 cm soil profile varied from 17.8 to 30.5%, the upper position value was significantly greater (P < 0.05) than those at other positions. The highest aboveground biomass was observed at the lower position (921 kg ha−1), while the highest belowground biomass within the 0–30 cm profile was found at the upper position (4460 kg ha−1). More fine earth and plant litter input accompanied by lower C and N losses induced by rainfall erosion resulted in higher soil organic C and total N densities (28.6 Mg C ha−1 and 2.87 Mg N ha−1) at the lower position.

Conclusions

Rock fragments may promote root growth but limit aboveground biomass production, and can therefore change the biomass distribution pattern. Our findings provide more evidence for scientifically assessing alpine steppe productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arocena J, Hall K, Zhu LP (2012) Soil formation in high elevation and permafrost areas in the Qinghai Plateau (China). Spanish J Soil Sci 2:34–49

    Google Scholar 

  • Babalola O, Lal R (1977) Subsoil gravel horizon and maize root growth. 2. Effects of gravel size, inter gravel texture and natural gravel horizon. Plant Soil 46:347–357. doi:10.1007/bf00010091

    Article  Google Scholar 

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163. doi:10.1111/j.1365-2389.1996.tb01386.x

    Article  CAS  Google Scholar 

  • Berg B, Laskowski R (2005) Litter decomposition: a guide to carbon and nutrient turnover. Academic, New York

    Google Scholar 

  • Bornemann L, Herbst M, Welp G, Vereecken H, Amelung W (2011) Rock fragments control size and saturation of organic carbon pools in agricultural topsoil. Soil Sci Soc Am J 75:1898–1907. doi:10.2136/sssaj2010.0454

    Article  CAS  Google Scholar 

  • Brady NC, Weil RR (2004) The nature and properties of soil. Prentice-Hall Press, New York

    Google Scholar 

  • Brakensiek DL, Rawls WJ (1994) Soil containing rock fragments: effects on infiltration. Catena 23:99–110. doi:10.1016/0341-8162(94)90056-6

    Article  Google Scholar 

  • Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124:3–22. doi:10.1016/j.geoderma.2004.03.005

    Article  CAS  Google Scholar 

  • Cai YJ, Wang XD, Tian LL, Zhao H, Lu XY, Yan Y (2014) The impact of excretal returns from yak and Tibetan sheep dung on nitrous oxide emissions in an alpine steppe on the Qinghai-Tibetan Plateau. Soil Biol Biochem 76:90–99. doi:10.1016/j.soilbio.2014.05.008

    Article  CAS  Google Scholar 

  • Carrick S, Palmer D, Webb T, Scott J, Lilburne L (2013) Stony soils are a major challenge for nutrient management under irrigation development. Accurate and efficient use of nutrients on farms. Occasional Rep. 26. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand

  • Carter MR (1993) Soil sampling and methods of analysis. Lewis Publishers, Boca Raton

    Google Scholar 

  • Cerda A (2001) Effects of rock fragment cover on soil infiltration, interrill runoff and erosion. Eur J Soil Sci 52:59–68. doi:10.1046/j.1365-2389.2001.00354.x

    Article  Google Scholar 

  • Chen HS, Liu JW, Wang KL, Zhang W (2011) Spatial distribution of rock fragments on steep hillslopes in karst region of northwest Guangxi, China. Catena 84:21–28. doi:10.1016/j.catena.2010.08.012

    Article  Google Scholar 

  • Childs SW, Flint AL (1990) Physical properties of forest soils containing rock fragments. In: Gessel SP, Weetman GF, Powers RF (eds) Sustained productivity of forest soils. University of British Columbia, Faculty of Forestry Publ, Vancouver, BC, pp 95–121

    Google Scholar 

  • Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Perez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Diaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Victoria Vaieretti M, Westoby M (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071. doi:10.1111/j.1461-0248.2008.01219.x

    Article  PubMed  Google Scholar 

  • Corti G, Ugolini FC, Agnelli A, Certini G, Cuniglio R, Berna F, Sanjurjo MJF (2002) The soil skeleton, a forgotten pool of carbon and nitrogen in soil. Eur J Soil Sci 53:283–298. doi:10.1046/j.1365-2389.2002.00442.x

    Article  Google Scholar 

  • Cousin I, Nicoullaud B, Coutadeur C (2003) Influence of rock fragments on the water retention and water percolation in a calcareous soil. Catena 53:97–114. doi:10.1016/s0341-8162(03)00037-7

    Article  Google Scholar 

  • Danalatos NG, Kosmas CS, Moustakas NC, Yassoglou N (1995) Rock fragments .2. Their impact on soil physical properties and biomass production under Mediterranean conditions. Soil Use Manag 11:121–126. doi:10.1111/j.1475-2743.1995.tb00509.x

    Article  Google Scholar 

  • De Baets S, Meersmans J, Vanacker V, Quine TA, Van Oost K (2013) Spatial variability and change in soil organic carbon stocks in response to recovery following land abandonment and erosion in mountainous drylands. Soil Use Manag 29:65–76. doi:10.1111/sum.12017

    Article  Google Scholar 

  • Dong ZB, Wang HT, Liu XP, Wang XM (2004) A wind tunnel investigation of the influences of fetch length on the flux profile of a sand cloud blowing over a gravel surface. Earth Surf Process Landf 29:1613–1626. doi:10.1002/esp.1116

    Article  Google Scholar 

  • Eavis BW (1972) Soil physical conditions affecting seedling root growth .1. Mechanical impedance, aeration and moisture availability as influenced by bulk density and moisture levels in a sandy loam soil. Plant Soil 36:613–622. doi:10.1007/bf01373511

    Article  Google Scholar 

  • Ercoli L, Masoni A, Mariotti M, Arduini I (2006) Dry matter accumulation and remobilization of durum wheat as affected by soil gravel content. Cereal Res Commun 34:1299–1306. doi:10.1556/crc.34.2006.4.272

    Article  Google Scholar 

  • Estrada-Medina H, Graham RC, Allen MF, Jose Jimenez-Osornio J, Robles-Casolco S (2013) The importance of limestone bedrock and dissolution karst features on tree root distribution in northern Yucatan, Mexico. Plant Soil 362:37–50. doi:10.1007/s11104-012-1175-x

    Article  CAS  Google Scholar 

  • Feng RZ, Long RJ, Shang ZH, Ma YS, Dong SK, Wang YL (2010) Establishment of Elymus natans improves soil quality of a heavily degraded alpine meadow in Qinghai-Tibetan Plateau, China. Plant Soil 327:403–411. doi:10.1007/s11104-009-0065-3

    Article  CAS  Google Scholar 

  • Flint AL, Childs S (1984) Development and calibration of an irregular hole bulk density sampler. Soil Sci Soc Am J 48:374–378

    Article  Google Scholar 

  • Gong ZT (1999) Chinese Soil Taxonomy: Theories, Methods and Applications. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Grewal SS, Singh K, Dyal S (1984) Soil profile gravel concentration and its effect on rainfed crop yields. Plant Soil 81:75–83. doi:10.1007/bf02206896

    Article  Google Scholar 

  • Gurnell AM, Blackall TD, Petts GE (2008) Characteristics of freshly deposited sand and finer sediments along an island-braided, gravel-bed river: The roles of water, wind and trees. Geomorphology 99:254–269. doi:10.1016/j.geomorph.2007.11.009

    Article  Google Scholar 

  • Heisner U, Raber B, Hildebrand EE (2004) The importance of the soil skeleton for plant-available nutrients in sites of the Southern Black Forest, Germany. Eur J For Res 123:249–257. doi:10.1007/s10342-004-0041-7

    Article  CAS  Google Scholar 

  • Hong JT, Ma XX, Wang XD (2016) Leaf meristems: an easily ignored component of the response to human disturbance in alpine grasslands. Ecol Evol 6:2325–2332. doi:10.1002/ece3.2059

    Article  PubMed  PubMed Central  Google Scholar 

  • IUSS Working Group WRB (2014) World Reference Base for Soil Resources 2014. International soil classification system for naming soil and creating legends for soil maps. Food and Agriculture Organization of the United Nations. Rome: pp. 154

  • Jackson LP, Hall IV, Aalders LE (1972) Lowbush blueberry seedling growth as affected by soil type. Can J Soil Sci 52:113–115

    Article  Google Scholar 

  • Jobbagy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436. doi:10.2307/2641104

    Article  Google Scholar 

  • Kay BD (1998) Soil structure and organic carbon: a review. In: Lal R, Kimble JM, Follett RF, Stewart BA (eds) Soil Processes and the Carbon Cycle. CRC Press, Boca Raton, FL, pp 169–197

    Google Scholar 

  • Kongsrud KL (1978) Irrigation experiments with strawberries. Forsk Fors Landbruket 29:301–312

    Google Scholar 

  • Lal R (2003) Soil erosion and the global carbon budget. Environ Int 29:437–450. doi:10.1016/s0160-4120(02)00192-7

    Article  CAS  PubMed  Google Scholar 

  • Li XY (2003) Gravel–sand mulch for soil and water conservation in the semiarid loess region of northwest China. Catena 52:105–127. doi:10.1016/S0341-8162(02)00181-9

    Article  Google Scholar 

  • Li XY, Contreras S, Sole-Benet A (2007) Spatial distribution of rock fragments in dolines: A case study in a semiarid Mediterranean mountain-range (Sierra de Gador, SE Spain). Catena 70:366–374. doi:10.1016/j.catena.2006.11.003

    Article  Google Scholar 

  • Meersmans J, Martin MP, De Ridder F, Lacarce E, Wetterlind J, De Baets S, Le Bas C, Louis BP, Orton TG, Bispo A, Arrouays D (2012) A novel soil organic C model using climate, soil type and management data at the national scale in France. Agron Sustain Dev 32:873–888. doi:10.1007/s13593-012-0085-x

    Article  Google Scholar 

  • Mi MX, Shao MA, Liu BX (2016) Effect of rock fragments content on water consumption, biomass and water-use efficiency of plants under different water conditions. Ecol Eng 94:574–582. doi:10.1016/j.ecoleng.2016.06.044

    Article  Google Scholar 

  • Morisada K, Ono K, Kanomata H (2004) Organic carbon stock in forest soils in Japan. Geoderma 119:21–32. doi:10.1016/S0016-7061(03)00220-9

    Article  CAS  Google Scholar 

  • Munn L, Harrington N, McGirr DR (1987) Rock fragments. In: Williams RD and Schuman GE (eds) Reclaiming Mine Soils and Overburden in the Western United States. Analytic Parameters and Procedures. Soil Conservation Society of America, pp 259–282

  • Nelson DW, Sommers LE (1982) Total carbon, organic carbon and organic matter. In: Page AL, Miller RH, Keeney DR (eds) Methods of Soil Analysis, 2nd edn. American Society of Agronomy, Madison, pp 539–577

    Google Scholar 

  • Nie XJ, Zhao TQ, Qiao XN (2013) Impacts of soil erosion on organic carbon and nutrient dynamics in an alpine grassland soil. Soil Sci Plant Nutr 59:660–668. doi:10.1080/00380768.2013.795475

    Article  CAS  Google Scholar 

  • Novak V, Knava K (2012) The influence of stoniness and canopy properties on soil water content distribution: simulation of water movement in forest stony soil. Eur J For Res 131:1727–1735. doi:10.1007/s10342-011-0589-y

    Article  Google Scholar 

  • Nyssen J, Haile M, Poesen J, Deckers J, Moeyersons J (2001) Removal of rock fragments and its effect on soil loss and crop yield, Tigray, Ethiopia. Soil Use Manag 17:179–187. doi:10.1079/sum200173

    Article  Google Scholar 

  • Nyssen J, Poesen J, Moeyersons J, Lavrysen E, Haile M, Deckers J (2002) Spatial distribution of rock fragments in cultivated soils in northern Ethiopia as affected by lateral and vertical displacement processes. Geomorphology 43:1–16. doi:10.1016/s0169-555x(01)00096-4

    Article  Google Scholar 

  • Pérez FL (1998) Conservation of soil moisture by different stone covers on alpine talus slopes (Lassen, California). Catena 33:155–177. doi:10.1016/S0341-8162(98)00091-5

    Article  Google Scholar 

  • Poesen J, Lavee H (1994) Rock fragments in top soils: significance and processes. Catena 23:1–28. doi:10.1016/0341-8162(94)90050-7

    Article  Google Scholar 

  • Poesen JW, van Wesemael B, Bunte K, Benet AS (1998) Variation of rock fragment cover and size along semiarid hillslopes: a case-study from southeast Spain. Geomorphology 23:323–335. doi:10.1016/s0169-555x(98)00013-0

    Article  Google Scholar 

  • Qin Y, Yi SH, Chen JJ, Ren SL, Ding YJ (2015) Effects of gravel on soil and vegetation properties of alpine grassland on the Qinghai-Tibetan plateau. Ecol Eng 74:351–355. doi:10.1016/j.ecoleng.2014.10.008

    Article  Google Scholar 

  • Rytter RM (2012) Stone and gravel contents of arable soils influence estimates of C and N stocks. Catena 95:153–159. doi:10.1016/j.catena.2012.02.015

    Article  CAS  Google Scholar 

  • Schimel DS, Braswell B, Holland EA, McKeown R, Ojima DS, Painter TH, Parton WJ, Townsend AR (1994) Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Glob Biogeochem Cycles 8:279–293. doi:10.1029/94GB00993

    Article  CAS  Google Scholar 

  • Seguin G (1971) Influence des facteurs naturels sur les caractères des vins. In: Ribereau-Gayon J, Peynaud E (eds) Sciences et Techniques de la Vigne, vol 1. Dunod, Paris, pp 671–725

    Google Scholar 

  • Shi ZJ, Wang YH, Yu PT, Xu LH, Xiong W, Guo H (2008) Effect of rock fragments on the percolation and evaporation of forest soil in Liupan Mountains, China. Acta Ecol Sin 28:6090–6098. doi:10.1016/S1872-2032(09)60014-7

    Article  Google Scholar 

  • Stewart VI, Adams WA, Abdulla HH (1970) Quantitative pedological studies on soils derived from silurian mudstones. 2. Relationship between stone content and apparent density of fine earth. J Soil Sci 21:248–255

    Article  Google Scholar 

  • Tetegan M, de Forges ACR, Verbeque B, Nicoullaud B, Desbourdes C, Bouthier A, Arrouays D, Cousin I (2015a) The effect of soil stoniness on the estimation of water retention properties of soils: A case study from central France. Catena 129:95–102. doi:10.1016/j.catena.2015.03.008

    Article  Google Scholar 

  • Tetegan M, Korboulewsky N, Bouthier A, Samouelian A, Cousin I (2015b) The role of pebbles in the water dynamics of a stony soil cultivated with young poplars. Plant Soil 391:307–320. doi:10.1007/s11104-015-2429-1

    Article  CAS  Google Scholar 

  • Torn MS, Trumbore SE, Chadwick OA, Vitousek PM, Hendricks DM (1997) Mineral control of soil organic carbon storage and turnover. Nature 389:170–173. doi:10.1038/38260

    Article  CAS  Google Scholar 

  • Torri D, Poesen J, Monaci F, Busoni E (1994) Rock fragment content and fine soil bulk density. Catena 23:65–71. doi:10.1016/0341-8162(94)90053-1

    Article  Google Scholar 

  • Valentin C (1994) Surface sealing as affected by various rock fragment covers in west Africa. Catena 23:87–97. doi:10.1016/0341-8162(94)90055-8

    Article  Google Scholar 

  • van Wesemael B, Mulligan M, Poesen J (2000) Spatial patterns of soil water balance on intensively cultivated hillslopes in a semi-arid environment: the impact of rock fragments and soil thickness. Hydrol Process 14:1811–1828. doi:10.1002/1099-1085(200007)14:10<1811::aid-hyp65>3.0.co;2-d

    Article  Google Scholar 

  • van Wesemael B, Poesen J, Kosmas CS, Danalatos NG, Nachtergaele J (1996) Evaporation from cultivated soils containing rock fragments. J Hydrol 182:65–82. doi:10.1016/0022-1694(95)02931-1

    Article  Google Scholar 

  • Wang XD, Liu GC, Liu SZ (2011) Effects of gravel on grassland soil carbon and nitrogen in the arid regions of the Tibetan Plateau. Geoderma 166:181–188. doi:10.1016/j.geoderma.2011.07.028

    Article  CAS  Google Scholar 

  • Wu XD, Zhao L, Fang HB, Chen J, Pang QQ, Wang ZW, Chen MJ, Ding YJ (2012) Soil enzyme activities in permafrost regions of the western Qinghai-Tibetan Plateau. Soil Sci Soc Am J 76:1280–1289. doi:10.2136/sssaj2011.0400

    Article  CAS  Google Scholar 

  • Wynn JG, Bird MI, Vallen L, Grand-Clement E, Carter J, Berry SL (2006) Continental-scale measurement of the soil organic carbon pool with climatic, edaphic, and biotic controls. Glob Biogeochem Cycles 20:GB1007. doi:10.1029/2005GB002576

    Article  CAS  Google Scholar 

  • Yang JP, Mi R, Liu JF (2009) Variations in soil properties and their effect on subsurface biomass distribution in four alpine meadows of the hinterland of the Tibetan Plateau of China. Environ Geol 57:1881–1891. doi:10.1007/s00254-008-1477-8

    Article  Google Scholar 

  • Yang YH, Fang JY, Tang YH, Ji CJ, Zheng CY, He JS, Zhu B (2008) Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Glob Chang Biol 14:1592–1599. doi:10.1111/j.1365-2486.2008.01591.x

    Article  Google Scholar 

  • Zhu YJ, Shao MA (2008) Spatial distribution of surface rock fragment on hillslopes in a small catchment in wind-water erosion crisscross region of the Loess Plateau. Sci China Ser D Earth Sci 51:862–870. doi:10.1007/s11430-008-0056-x

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the “Strategic Priority Research Program” of the Chinese Academy of Sciences (XDB03030505), the National Natural Science Foundation of China (41573070) and the Open Fund of the State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences (Y412201403).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanjiang Cai or Xiaodan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Z., Cai, Y., Yan, Y. et al. Embedded rock fragments affect alpine steppe plant growth, soil carbon and nitrogen in the northern Tibetan Plateau. Plant Soil 420, 79–92 (2017). https://doi.org/10.1007/s11104-017-3376-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3376-9

Keywords

Navigation