Skip to main content
Log in

Selenium geochemistry in reclaimed phosphate mine soils and its relationship with plant bioavailability

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and Aims

Selenium accumulation in vegetation has resulted in toxicity in livestock grazing on phosphate mine soils in Southeastern Idaho.

Methods

Plant and soil samples were collected from sites located near phosphate mines. Soil physicochemical properties, Se speciation, and Se distribution from a sequential extraction procedure (SEP) were examined in relation to bioavailability in the Se-hyperaccumulator, western aster (Symphyotrichum ascendens Lindl.). Selenium-hyperaccumulators are plants that can absorb over 1000 mg Se kg−1 DM (Dry Matter).

Results

Chemical analyses revealed that western aster contained Se exceeding 6000 mg kg−1 DM. Soil speciation results indicated that selenite (SeO3 2−) was dominant with lower levels of selenate (SeO4 2−) present. This was expanded using an SEP that accounted for six fractions. Regression analyses indicated a strong relationship for western aster Se and the water-soluble and phosphate-extractable SEP fractions combined (R 2 = 0.85). Once carbonate, amorphous Fe-oxide, organic, and residual Se fractions were factored into the analysis, the relationship decreased. A strong relationship between selenate and the water-soluble Se fraction was also observed (R2 = 0.83).

Conclusions

Soluble and phosphate-extractable Se were determined to be “bioavailable fractions” for western aster. Thus, simple water extractions can be used for quick assessment of Se bioavailability and provide a means to identify potentially hazardous areas locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alam MGM, Tokunaga S, Maekawa T (2000) Extraction of selenium from a contaminated forest soil using phosphate. Environ Technol 21:1371–1378

    Article  CAS  Google Scholar 

  • Amacher M (2010) Sequential extraction of selenium. USDA-Forest Service Open File Report. pp. 155–159

  • Balistrieri LS, Chao TT (1990) Adsorption of selenium by amorphous iron oxyhydroxide and manganese dioxide. Geochim Cosmochim Acta 54:739–751

    Article  CAS  Google Scholar 

  • Blanchard T, Baun C, Stone L, Gudgell D, Hayes J (2002) Hardrock and phosphate mining in Idaho. A report by the Idaho Conservation League and Boulder-White Clouds Council. www.wildwhiteclouds.org/news_mining_IdahoMiningRpt.pdf. Accessed July 2016

  • Bond MM (1999) Characterization and control of selenium releases from mining in the Idaho phosphate region. MS Thesis. University of Idaho, Moscow

  • Broadley MR, White PJ, Bryson RJ, Meacham MC, Bowen HC, Johnson SE, Hawkesford MJ, McGrath SP, Zhao F, Breward N, Harriman M, Tucker M (2006) Biofortification of UK food crops with selenium. Nutrition Society 65:169–181

    Article  CAS  Google Scholar 

  • Buck BW, Jones JL (2002) Interagency/industry coordination to respond to selenium contamination at phosphate mines in southeastern Idaho. http://citeseerx.ist.psu.edu/viewdoc/download?. Accessed July 2016

  • Burau RG (1989) Selenium in arid and semiarid soils. J Irrig and Drain E-ASCE 115:42–47

    Article  Google Scholar 

  • Cartes P, Gianfreda L, Mora ML (2005) Uptake of selenium and its antioxidant activity in ryegrass when applied as Selenate and selenite forms. Plant Soil 276:359–367

    Article  CAS  Google Scholar 

  • Chapman HD (1965) Total exchangeable bases. Soil science Society of America. Inc. and American Society of Agronomy, Inc., Madison

  • Chapman PM, Adams WJ, Brooks ML, Delos CG, Luoma SN, Maher WA, Ohlendorf HM, Presser TS, Shaw DP (2010) Ecological assessment of selenium in the aquatic environment. CRC Press, New York

    Book  Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Croghan CW, Egeghy PP (2003) Methods of dealing with values below the limit of detection using SAS. Southeastern SAS User Group, St. Petersburg

    Google Scholar 

  • de Souza MP, Pilon-Smits EAH, Lytle CM, Hwang S, Tai J, Honma TSU, Yeh L, Terry N (1998) Rate-limiting steps in selenium assimilation and volatilization by Indian mustard. Plant Physiol 117:1487–1494

    Article  PubMed  PubMed Central  Google Scholar 

  • Davis TZ, Stegelmeier BL, Green BT, Welch KD, Panter KE, Hall JO (2011) Acute toxicity of selenium compounds commonly found in selenium accumulator plants. CAB International, Cambridge

    Book  Google Scholar 

  • Davis TZ, Stegelmeier BL, Panter KE, Cook D, Gardner DR, Hall JO (2012) Toxicokinetics and pathology of plant-associated acute selenium toxicosis in steers. J vet Diagn Investig 24:319–327

    Article  Google Scholar 

  • Davis TZ, Stegelmeier BL, Welch K, Pfister JA, Panter KE, Hall JO (2013) Comparative oral dose toxicokinetics of selenium compounds commonly found in selenium accumulator plants. J Anim Sci 91:4501–4509

    Article  CAS  PubMed  Google Scholar 

  • Dhillon SK, Dhillon KS (2000) Selenium adsorption in soils as influenced by different anions. J Plant Nutr 163:577–582

    Article  CAS  Google Scholar 

  • Dhillon KS, Dhillon SK (2009) Accumulation and distribution of selenium in some vegetable crops grown in selenate-se treated clay loam soil. Front Agric China 3:366–373

    Article  Google Scholar 

  • Edmonson AJ, Norman BB, Suther D (1993) Survey of state veterinarians and state veterinary diagnostic laboratories for selenium deficiency and toxicosis in animals. J am vet med Assoc 202:865–872

    CAS  PubMed  Google Scholar 

  • El Mehdawi AF, Cappa JJ, Fakra SC, Self J, Pilon-Smits EAH (2012) Interactions of selenium hyperaccumulators and nonaccumulators during cocultivation on seleniferous or nonseleniferous soil – the importance of having good neighbors. New Phytol 194:264–277

    Article  PubMed  Google Scholar 

  • Ellis DR, Salt DE (2003) Plants, selenium and human health. Curr Opin Plant Biol 6:273–279

    Article  CAS  PubMed  Google Scholar 

  • Fessler AJ, Moller G, Talcott PA, Exon JH (2003) Selenium toxicity in sheep grazing reclaimed phosphate mining sites. Vet hum Toxicol 45:294–298

    CAS  PubMed  Google Scholar 

  • Fordyce FM (2013) Selenium deficiency and toxicity in the environment. In: Selinus O (ed) Essentials of medical geology, Revised edn. Springer, Netherlands

    Google Scholar 

  • Freeman JL, Quinn CF, Marcus MA, Fakra S, Pilon-Smits EAH (2006) Selenium-tolerant diamondback moth disarms Hyperaccumulator plant defense. Curr Biol 16:2181–2192

    Article  CAS  PubMed  Google Scholar 

  • Freeman JL, Quinn CF, Lindblom SD, Klamper EM, Pilon-Smits EAH (2009) Selenium protects the hyperaccumulator Stanleya pinnata against black-tailed prairie dog herbivory in native seleniferous habitats. Am J bot 96:1075–1085

    Article  CAS  PubMed  Google Scholar 

  • Gee GW, Bauder JW (1986) Particle-size analysis. In: Klute A (ed) Methods of soil analysis: part 1-physical and mineralogical methods. 5 edn. Soil Science Society of America, Inc. and American Society of Agronomy, Inc., Madison

    Google Scholar 

  • Gleyzes C, Tellier S, Astruc M (2002) Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. TrAC Trends Anal Chem 21:451–467

    Article  CAS  Google Scholar 

  • Goldberg S (2013) Modeling selenite adsorption envelopes on oxides, clay minerals, and soils using the triple layer model. Soil Sci Soc am J 77:64–71

    Article  CAS  Google Scholar 

  • Goldberg S, Glaubig RA (1988) Anion sorption on a calcareous, Montmorillonitic soil-selenium. Soil Sci Soc am J 52:954–958

    Article  CAS  Google Scholar 

  • Goldberg S, Traina SJ (1987) Chemical modeling of anion competition on oxides using constant capacitance model-mixed ligand approach. Soil Sci Soc am J 51:929–932

    Article  CAS  Google Scholar 

  • Gupta M, Gupta S (2016) An overview of selenium uptake, metabolism, and toxicity in plants. Front Plant Sci 7:2074

    PubMed  Google Scholar 

  • Hall JO, Winger H (2012) Toxicology ICP/MS sample digestion and preparation procedure for Forage & Feed. Utah Veterinary Diagnostic Laboratory, Logan

    Google Scholar 

  • Hartikainen H (2005) Biogeochemistry of selenium and its impact on food chain quality and human health. J Trace Elem med Biol 18:309–318

    Article  CAS  PubMed  Google Scholar 

  • Hopke PK, Liu C, Rubin DB (2001) Multiple imputation for multivariate data with missing and below-threshold measurements: time-series concentrations of pollutants in the Arctic. Biometrics 57:22–33

    Article  CAS  PubMed  Google Scholar 

  • IDEQ (2007) Selenium project, Southeast Idaho phosphate mining resource area. Water Quality Sampling for Metals - Blackfoot River and Tributaries (HUC 17040207), Selected Bear River Tributaries (HUC 16010201), and Selected Salt River Tributaries (HUC 1704105). Idaho Department of Environmental Quality, Pocatello Regional Office, Pocatello. https://www.deq.idaho.gov/media/468229-_water_data_reports_surface_water_water_bodies_selenium_southeast_idaho_2007.pdf. Accessed July 2016

  • Jackson ML (1958) Soil chemical analysis. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Jacobs LW (1989) Selenium in agriculture and the environment. Soil Science Society of America Special Publication 23. SSSA, Madison

  • John DA, Leventhal JS (1995) Ch 2 bioavailability of metals. In: du Bray EA (ed) USGS Open File Report 95-831: Preliminary compilation of descriptive geoenvironmental mineral deposit models. U.S. Department of the Interior - U.S. Geological Survey, Denver. https://pubs.usgs.gov/of/1995/0831/report.pdf. Accessed July 2016

  • Knudsen AC, Gunter ME (2004) Chapter 7: the effects of weathering on the mineralogy of the phosphoria formation, Southeast Idaho. In: James RH (ed) Handbook of exploration and environmental geochemistry. Elsevier Science B.V, Amsterdam

    Google Scholar 

  • Kunze GW, Dixon JB (1986) Pretreatment for mineralogical analysis. In: Klute A (ed) Methods of soil analysis: part 1-physical and mineralogical methods. 5 edn. Soil science Society of America, Inc. and American Society of Agronomy, Inc., Madison

    Google Scholar 

  • Luoma SN (1983) Bioavailability of trace metals to aquatic organisms - a review. Sci Total Environ 28:1–22

    Article  CAS  PubMed  Google Scholar 

  • Martens DA, Suarez DL (1997) Selenium speciation of soil/sediment determined with sequential extractions and hydride generation atomic absorption spectrophotometry. Environ Sci Technol 31:133–139

    Article  CAS  Google Scholar 

  • McNeal JM, Balistrieri LS (1989) Geochemistry and occurrence of selenium: an overview. In: Jacobs LW (ed) Selenium in agriculture and the environment. Soil Science Society of America and American Society of Agronomy, Madison

    Google Scholar 

  • Meyers T (2013) Remediation scenarios for selenium contamination, Blackfoot watershed, southeast Idaho, USA. Hydrogeol J 21:655–671

    Article  Google Scholar 

  • Moreno Rodriguez MJ, Cala Rivero V, Jiménez Ballesta R (2005) Selenium distribution in Topsoils and plants of a semi-arid Mediterranean environment. Environ Geochem Health 27:513–519

    Article  CAS  PubMed  Google Scholar 

  • NAS-NRC (1983) Selenium in nutrition, Revised edn. National Acadamies Press, Washington DC

    Google Scholar 

  • Neal RH (1995) Selenium. Blackie Academic & Professional, London

    Book  Google Scholar 

  • Neal RH, Sposito G, Holtzclaw KM, Traina SJ (1987) Selenite adsorption on alluvial soils: II. Solution composition effects. Soil Sci Soc Am J 51:1165–1169

    Article  CAS  Google Scholar 

  • Neuhierl B, Bock A (1996) On the mechanism of selenium tolerance in selenium-accumulating plants. Purification and characterization of a specific selenocysteine methyltransferase from cultured cells of Astrugulus bisculatus. Eur J Biochem 239:235–238

    Article  CAS  PubMed  Google Scholar 

  • Pfister JA, Davis TZ, Hall JO (2013) Effect of selenium concentration on feed preferences by cattle and sheep. J Anim Sci 91:5970–5980

    Article  CAS  PubMed  Google Scholar 

  • Pilbeam DJ, Greathead HMR, Drihem K (2015) Selenium. CRC Press, Boca Raton

    Book  Google Scholar 

  • Quinn CF, Prins CN, Freeman JL, Gross AM, Hantzis LJ, Reynolds RJB, Yang S, Covey PA, Banuelos GS, Pickering IJ, Pilon-Smits EAH (2011) Selenium accumulation in flowers and its effects on pollination. New Phytol 192:727–737

    Article  CAS  PubMed  Google Scholar 

  • Richards RT, Chambers JC, Ross C (1998) Use of native plants on Federal Lands: policy and practice. J Range Manag 51:625–632

    Article  Google Scholar 

  • Rosenfeld I, Beath OA (1964) Selenium: Geobotany, biochemistry, toxicity and nutrition. Academic Press, New York

    Google Scholar 

  • Ryser AL, Strawn DG, Marcus MA, Johnson-Maynard JL, Gunter ME, Möller G (2005) Micro-spectroscopic investigation of selenium-bearing minerals from the western US phosphate resource area. Geochem Trans 6:1–11

    Article  CAS  PubMed Central  Google Scholar 

  • Ryser AL, Strawn DG, Marcus MA, Fakra S, Johnson-Maynard JL, Möller G (2006) Microscopically focused synchrotron X-ray investigation of selenium speciation in soils developing on reclaimed mine lands. Environ Sci Technol 40:462–467

    Article  CAS  PubMed  Google Scholar 

  • Saffari M, Yasrebi J, Karimian N, Shan XQ (2009) Effect of calcium carbonate removal on the chemical forms of zinc in calcareous soils by three sequential extraction methods. Research Journal of Biological Sciences 4:858–865

    Google Scholar 

  • SAS Institute Inc. (2013) JMP 11.0.0. SAS Institute Inc., Cary

  • Shacklette HT, Boerngen JG (1984) Element concentrations in soils and other surficial materials of the conterminous United States. US geological survey professional paper 1270. United States Government Print Office, Washington

    Google Scholar 

  • Sharmasarkar S, Vance GF (1995) Characterization and correlation of soil and plant selenium in some range and coal mine environments of Wyoming. Commun Soil Sci Plant Anal 26:2577–2591

    Article  CAS  Google Scholar 

  • Shortridge EH, O'Hara PJ, Marshall PM (1971) Acute selenium poisoning in cattle. New Zeal vet J 19:47–50

    Article  CAS  Google Scholar 

  • Spallholz JE (1994) On the nature of selenium toxicity and carcinostatic activity. Free Radic Biol med 17:45–64

    Article  CAS  PubMed  Google Scholar 

  • Stillings L, Amacher M (2004) Selenium attenuation in a wetland formed from mine drainage in the Phosphoria formation, southeast Idaho. Life cycle of the Phosphoria formation: from deposition to the post-mining environment. Elsevier B.V., Amsterdam

    Google Scholar 

  • Tamm O (1922) Eine method zur bestimmung der anorganischen komponenten des gelkomplex in boden. Medd Statens Skogforsokanst 19:385–404

    Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851

    Article  CAS  Google Scholar 

  • Thomas GW (1996) Soil pH and acidity. American Society of Agronomy, Madison

    Google Scholar 

  • Unrine JM, Jackson BP, Hopkins WA (2007) Selenomethionine biotransformation and incorporation into proteins along a simulated terrestrial food chain. Environ Sci Technol 41:3601–3606

    Article  CAS  PubMed  Google Scholar 

  • Van Hoewyk D, Garifullina GF, Ackley AR, Abdel-Ghany SE, Marcus MA, Fakra S, Ishiyama K, Inoue E, Pilon M, Takahashi H, Pilon-Smits EAH (2005) Overexpression of AtCpNifS enhances selenium tolerance and accumulation in Arabidopsis. Plant Physiol 139:1518–1528

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagemann R, Brunskill GJ, Graham BW (1977) Composition and reactivity of some river sediments from Mackenzie Valley, NWT Canada. Environ Geol 1:349–358

    Article  CAS  Google Scholar 

  • White PJ (2016) Selenium accumulation by plants. Ann bot 117:217–235

    PubMed  Google Scholar 

  • White P, Bowen H, Parmaguru P, Fritz M, Spracklen WP, Spiby RE, Meacham MC, Mead A, Harriman M, Trueman LJ, Smith BM, Thomas B, Broadley MR (2004) Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J Exp Biol 55:1927–1937

    CAS  Google Scholar 

  • Yamada H, Yumei K, Aso T, Hiroshi U, Fujimura T, Yonebayashi K (1998) Chemical forms and stability of selenium in soil. Soil Sci Plant Nutr 44:385–391

    Article  CAS  Google Scholar 

  • Zhao CY, Ren JH, Xue CZ, Lin E (2005) Study on the relationship between soil selenium and plant selenium uptake. Plant Soil 277:197–206

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this research was provided by the United States Department of Agriculture-Agricultural Research Service Grant No. A26232.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica E. Favorito.

Additional information

Responsible Editor: Juan Barcelo.

Electronic supplementary material

ESM 1

(DOCX 134 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Favorito, J.E., Eick, M.J., Grossl, P.R. et al. Selenium geochemistry in reclaimed phosphate mine soils and its relationship with plant bioavailability. Plant Soil 418, 541–555 (2017). https://doi.org/10.1007/s11104-017-3299-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3299-5

Keywords

Navigation