Skip to main content
Log in

Intraspecific variation in morphological traits of root branch orders in Chamaecyparis obtusa

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

We aimed to clarify the intraspecific variation in the morphological traits of branch orders under different soil conditions in Chamaecyparis obtusa (Siebold & Zucc.) Endl.

Methods

We investigated the morphological traits of branch orders, based on 16,351 individual roots that were dissected from 12 intact fine root systems, up to a diameter of 2 mm at three C. obtusa stands. We also measured the concentrations of soil carbon, nitrogen, and inorganic nitrogen.

Results

The intact fine root systems up to the diameter of 2 mm had branched into between five and seven orders. The diameter of first- to fourth-order roots and the lengths of second- and third-order roots were significantly different among the three stands. The morphological traits of lower order (first to third) roots correlated with soil inorganic nitrogen concentrations, but higher order (fourth to sixth) roots correlated with soil carbon concentrations.

Conclusions

We clarified the possible ranges of intraspecific variation in the morphological traits of root branch orders within C. obtusa. Both the lower and higher orders of the intact fine root systems were tightly related to the surrounding soil conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ABC:

Acid buffering capacity

C:

Carbon

N:

Nitrogen

NPP:

Net primary productivity

Rb:

Branching ratio

SRL:

Specific root length

References

  • Alameda D, Villar R (2012) Linking root traits to plant physiology and growth in Fraxinus angustifolai Vahl. Seedlings under soil compaction conditions. Environ Exp Bot 79:49–57

    Article  Google Scholar 

  • Brunner I, Bakker MR, Björk RG, Hirano Y, Lukac M, Aranda X, Børja I, Eldhuset TD, Helmisaari HS, Jourdan C, Konôpka B, López BC, Pérez CM, Persson H, Ostonen I (2013) Fine-root turnover rates of European forests revisited: an analysis of data from sequential coring and ingrowth cores. Plant Soil 362:357–372

    Article  CAS  Google Scholar 

  • Eissenstat DM, Kucharski JM, Zadworny M, Adams TS, Koide RT (2015) Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest. New Phytol 208:114–124

    Article  PubMed  Google Scholar 

  • Finér L, Ohashi M, Noguchi K, Hirano Y (2011a) Factors causing variation in fine root biomass in forest ecosystem. For Ecol Manag 261:265–277

    Article  Google Scholar 

  • Finér L, Ohashi M, Noguchi K, Hirano Y (2011b) Fine root production and turnover in forest ecosystems in relation to stand and environmental characteristics. For Ecol Manag 262:2008–2023

    Article  Google Scholar 

  • Forestry Agency of Japan (1997) Report for forest damage-monitoring project by acid deposition (1990–1994). Tokyo (in Japanese)

  • Forestry Agency of Japan (2012) Annual reports on trends in forest and forestry 2011. Tokyo (in Japanese)

  • Giel RFH, von Wirén N (2014) Root nutrient foraging. Plant Physiol 166:509–517

    Article  Google Scholar 

  • Godbold DL, Fritz HW, Jentschke G, Meesenburg H, Rademacher P (2003) Root turnover and root necromass accumulation of Norway spruce (Picea abies) are affected by soil acidity. Tree Physiol 23:915–921

    Article  PubMed  Google Scholar 

  • Goebel M, Hobbie SE, Bulaj B, Zadworny M, Archibald DD, Oleksyn J, Reich PB, Eissenstat DM (2011) Decomposition of the finest root branching orders: linking belowground dynamics to fine-root function and structure. Ecol Monogr 81:89–102

    Article  Google Scholar 

  • Guo D, Mitchell RJ, Hendricks JJ (2004) Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest. Oecologia 140:450–457

    Article  PubMed  Google Scholar 

  • Guo D, Xia M, Wei X, Chang W, Liu Y, Wang Z (2008) Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytol 180:673–683

    Article  PubMed  Google Scholar 

  • Hirano Y, Mizoguchi T, Brunner I (2007) Root parameters of forest trees as sensitive indicators of acidifying pollutants: a review of research of Japanese forest trees. J For Res 12:134–142

    Article  CAS  Google Scholar 

  • Hirano Y, Tanikawa T, Makita N (2017) Biomass and morphology of fine roots in eight Cryptomeria japonica stands in soils with different acid-buffering capacities. For Ecol Manag 384:122–131

    Article  Google Scholar 

  • Hishi T, Tateno R, Takeda H (2006) Anatomical characteristics of individual roots within the fine root architecture of Chamaecyparis obtusa (Sieb. & Zucc.) in organic and mineral soil layers. Ecol Res 21:754–758

    Article  Google Scholar 

  • Hishi T, Tateno R, Fukushima K, Fujimaki R, Itoh M, Tokuchi N (2017) Changes in the anatomy, morphology and mycorrhizal infection of fine root systems of Cryptomeria japonica in relation to stand aging. Tree Physiol 37:61–70. doi:10.1093/treephys/tpw076

    PubMed  Google Scholar 

  • Jackson RB, Mooney HA, Schulze ED (1997) A global budget for fine root biomass, surface area, and nutrient contents. Proc Natl Acad Sci U S A 94:7362–7366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia SX, Wang ZQ, Li XP, Zhang XP, McLaughlin NB (2011) Effects of nitrogen fertilizer, root branch order and temperature on respiration and tissue N concentration of fine roots in Larix gmelinii and Fraxinus mandshurica. Tree Physiol 31:718–726

    Article  PubMed  Google Scholar 

  • Jia SX, McLaughlin NB, Gu JC, Li XP, Wang ZQ (2013) Relationships between root respiration rate and root morphology, chemistry and anatomy in Larix gmelinii and Fraxinus mandshurica. Tree Physiol 33:579–589

    Article  CAS  PubMed  Google Scholar 

  • Jones DL (2003) Organic acids in the rhizosphere – a critical review. Plant Soil 205:25–44

    Article  Google Scholar 

  • Kong D, Ma C, Zhang Q, Li L, Chen X, Zeng H, Guo D (2014) Leading dimensions in absorptive root trait variation across 96 subtropical forest. New Phytol 203:863–872

    Article  PubMed  Google Scholar 

  • Lima JE, Kojima S, Takahashi H, von Wirén N (2010) Ammonium triggers lateral root branching in Arabidopsis in an AMMONIUM TRANSPORTER 1;3-dependent manner. Plant Cell 22:3621–3633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makita N, Hirano Y, Dannoura M, Kominami Y, Mizoguchi T, Ishii H, Kanazawa Y (2009) Fine root morphological traits determine variation in root respiration of Quercus serrata. Tree Physiol 29:579–585

    Article  CAS  PubMed  Google Scholar 

  • Makita N, Hirano Y, Mizoguchi T, Kominami Y, Dannoura M, Ishii H, Finér L, Kanazawa Y (2011) Very fine roots respond to soil depth: biomass allocation, morphology, and physiology in a broad-leaved temperate forest. Ecol Res 26:95–104

    Article  Google Scholar 

  • Makita N, Hirano Y, Sugimoto T, Tanikawa T, Ishii H (2015) Intraspecific variation in fine root respiration and morphology in response to in situ soil nitrogen fertility in a 100-year-old Chamaecyparis obtusa forest. Oecologia 179:959–967

    Article  PubMed  Google Scholar 

  • McCormack ML, Adams TS, Smithwick EH, Eissenstat DM (2012) Predicting fine root lifespan from plant functional traits in temperate trees. New Phytol 195:823–831

    Article  Google Scholar 

  • McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo D, Helmisaari H-S, Hobbie EA, Iversen CM, Jackson RB, Leppalammi-Kujansuu J, Norby RJ, Phillips RP, Pregitzer KS, Pritchard SG, Rewald B, Zadworny M (2015) Redefining fine roots improves understanding of belowground contributions to terrestrial biosphere processes. New Phytol 207:505–518

    Article  PubMed  Google Scholar 

  • Miller AJ, Fan X, Orsel M, Smith SJ, Wells DM (2007) Nitrate transport and signaling. J Exp Bot 58:2297–2306

    Article  CAS  PubMed  Google Scholar 

  • Miyatani K, Mizusawa Y, Okada K, Tanikawa T, Makita N, Hirano Y (2016) Fine root traits in Chamaecyparis obtusa forest soils with different acid buffering capacities. Trees 30:415–429

    Article  CAS  Google Scholar 

  • Noguchi K, Konôpka B, Satomura T, Kaneko S, Takahashi M (2007) Biomass and production of fine roots in Japanese forests. J For Res 12:83–95

    Article  Google Scholar 

  • Noguchi K, Han Q, Araki MG, Kawasaki T, Kaneko S, Takahashi M, Chiba Y (2011) Fine-root dynamics in a young hinoki cypress (Chamaecyparis obtusa) stand for 3 years following thinning. J For Res 16:284–291

    Article  CAS  Google Scholar 

  • Ohyama T (1990) Inorganic nitrogen. In: Editing committee of experimental methods for plant nutrition (ed) experimental methods for plant nutrition. Hakuyusha, Tokyo, pp 174–179 (in Japanese)

    Google Scholar 

  • Ostonen I, Püttsepp Ü, Biel C, Alberton O, Bakker MR, Lõhmus K, Majdi H, Metcalfe D, Olsthoorn AFM, Pronk A, Vanguelova E, Weih M, Brunner I (2007) Specific root length as an indicator of environmental change. Plant Biosys 141:426–442

    Article  Google Scholar 

  • Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002) Fine root architecture of nine north American trees. Ecol Monogr 72:293–309

    Article  Google Scholar 

  • Qin R, Hirano Y, Brunner I (2007) Exudation of organic acid anions from poplar roots after exposure to Al, Cu and Zn. Tree Physiol 27:313–320

    Article  CAS  PubMed  Google Scholar 

  • Rasse DP, Rumpel C, Dignac MF (2005) Is soil carbon mostly root carbon? Mechanism for a specific stabilization. Plant Soil 269:341–356

    Article  CAS  Google Scholar 

  • Rewald B, Rechenmacher A, Godbold D (2014) It’s complicated: intraroot system variability of respiration and morphological traits in four deciduous tree species. Plant Physiol 166:736–745

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakata T (2000) Quantification of NO3 -N in soil extracts using UV absorption method. Jpn J Environ 42:53–55 (in Japanese)

    Google Scholar 

  • Tanikawa T, Sobue A, Hirano Y (2014) Acidification processes in soils with different acid buffering capacity in Cryptomeria japonica and Chamaecyparis obtusa forests over two decades. For Ecol Manag 334:284–292

    Article  Google Scholar 

  • Tawa Y, Takeda H (2015) Which is the best indicator for distinguishing between fine roots with primary and secondary development in Cryptomeria japonica D. Don: diameter, branching order, or protoxylem groups? Plant Roots 9:79–84

    Article  Google Scholar 

  • Valverde-Barrantes OJ, Horning AL, Smemo KA, Blackwood CB (2016) Phylogenetically structured traits in root systems influence arbuscular mycorrhizal colonization in woody angiosperms. Plant Soil 404:1–12

    Article  CAS  Google Scholar 

  • Wang Z, Guo D, Wang X, Gu J, Mei L (2006) Fine root architecture, morphology, and biomass of different branch orders of two Chinese temperate tree species. Plant Soil 288:155–171

    Article  CAS  Google Scholar 

  • Wang G, Fahey TJ, Xue S, Liu F (2013) Root morphology and architecture respond to N addition in Pinus tabuliformis, west China. Oecologia 171:583–590

    Article  PubMed  Google Scholar 

  • Weemstra M, Mommer L, Visser EJ, van Ruijven J, Kuyper TW, Mohren GM, Sterck FJ (2016) Towards a multidimensional root trait framework: a tree root review. New Phytol 211:1159–1169

    Article  CAS  PubMed  Google Scholar 

  • Xia M, Guo D, Pregitzer KS (2010) Ephemeral root modules in Fraxinus mandshurica. New Phytol 188:1065–1074

    Article  PubMed  Google Scholar 

  • Zadworny M, McCormack ML, Rawlik K, Jagodzinski M (2015) Seasonal variation in chemistry, but not morphology, in roots of Quercus robur growing in different soil types. Tree Physiol 35:644–652

    Article  CAS  PubMed  Google Scholar 

  • Zadworny M, McCormack ML, Mucha J, Reich P, Oleksyn J (2016) Scots pine fine roots adjust along a 2000-km latitudinal climatic gradient. New Phytol 212:389–399

    Article  PubMed  Google Scholar 

  • Zadworny M, McCormack ML, Żytkowiak R, Karolewski P, Mucha J, Oleksyn J (2017) Patterns of structural and defense investments in fine roots of scots pine (Pinus sylvestris L.) across a strong temperature and latitudinal gradient in Europe. Glob Chang Biol 23:1218–1231. doi:10.1111/gcb.13514

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the editor and three reviewers for positive and critical suggestions and K. Noguchi (Forestry and Forest Product Research Institute, FFPRI) for reading the first draft of manuscript and giving invaluable comments. We thank M. Takano, Y. Yamaguchi, C. Tokoro (Nagoya University), T. Okamoto, T. Mizoguchi (FFPRI) for their invaluable suggestions and assistance with field work and laboratory analyses. We also thank S. Suzuki (Okazaki municipal office), T. Kadoya (Aichi Prefectural Forestry Institute), H. Fukumoto (The Mie Prefectural Forestry Research Center), T. Hakamata (Shizuoka Prefectural Research Institute of Agriculture and Forestry), and the Tenryuu District Forest Office for permission to use the forest health-monitoring survey sites of the Forestry Agency of Japan. This study was partly funded by JSPS KAKENHI Grant number 15H04519.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryuusei Doi.

Additional information

Responsible Editor: Hans Lambers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doi, R., Tanikawa, T., Miyatani, K. et al. Intraspecific variation in morphological traits of root branch orders in Chamaecyparis obtusa . Plant Soil 416, 503–513 (2017). https://doi.org/10.1007/s11104-017-3230-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3230-0

Keywords

Navigation