Skip to main content

Advertisement

Log in

Soil surface pressure reduces post-emergent shoot growth in wheat

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

An emerging shoot experiences mechanical impedance (MI) prior to initiating photosynthesis, when it needs to break through soil that has a surface crust. This is the one of the first physical stresses that the shoot experiences. Surprisingly, few measurements have been made to understand the impact of this stress upon post-emergent shoot growth.

Methods

A system employed wax layers of different strengths to investigate shoot responses to MI of the soil surface. Experiments tested the responses of plants to MI using wax layers with different strengths, and tested different seed sizes, nitrogen and phosphorus nutrition and different wheat genotypes. Detailed leaf and root morphological responses and photosynthetic gas exchange and fluorescence were measured.

Results

MI produced permanent impairment to limit plant size, leaf growth rate and leaf photosynthetic function. Large seed sizes and N and P fertilization were able to overcome MI, especially for moderate levels of impedance. There was strong genotypic variation in the response to MI among 14 diverse wheat cultivars, and breeding for varieties suitable to no-tillage cropping systems appears to have facilitated selection in the ability to overcome MI of the soil surface.

Conclusions

This study has highlighted the importance of MI stress of the soil surface in limiting shoot growth and has broad implications for plant genotype selection and agricultural systems management, particularly with regard to nutrition and tillage systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acuna TLB, Wade LJ (2005) Root penetration ability of wheat through thin wax-layers under drought and well-watered conditions. Aust J Agric Res 56:1235–1244

    Article  Google Scholar 

  • Acuna TLB, Pasuquin E, Wade LJ (2007) Genotypic differences in root penetration ability of wheat through thin wax layers in contrasting water regimes and in the field. Plant Soil 301:135–149

    Article  Google Scholar 

  • Acuna TLB, He X, Wade LJ (2012) Temporal variation in root penetration ability of wheat genotypes through thin wax layers in contrasting water regimes and in the field. Field Crop Res 138:1–10

    Article  Google Scholar 

  • Afzalinia S, Zabihi J (2014) Soil compaction variation during corn growing season under conservation tillage. Soil Tillage Res 137:1–6

    Article  Google Scholar 

  • Amram A, Fadida-Myers A, Golan G, Nashef K, Ben-David R, Peleg Z (2015) Effect of GA-sensitivity on wheat early vigor and yield components under deep sowing. Front Plant Sci 6

  • Anderson WK, Garlinge J (2000) The wheat book: principles and practice. Agriculture Western Australia, Perth

    Google Scholar 

  • Aparicio N, Villegas D, Araus JL, Blanco R, Royo C (2002) Seedling development and biomass as affected by seed size and morphology in durum wheat. J Agric Res 139:143–150

    Google Scholar 

  • Awadhwal NK, Thierstein GE (1985) Soil crust and its impact on crop establishment: a review. Soil Tillage Res 5:289–302

    Article  Google Scholar 

  • Ball B, Meharry D, Acuna TLB, Sharma DL, Hamza M, Wade LJ (2011) Increases in seed density can improve plant stand and increase seedling vigour from small seeds of wheat (Triticum aestivum). Exp Agric 47:445–457

    Article  Google Scholar 

  • Baudron F, Tittonell P, Corbeels M, Letourmy P, Giller KE (2012) Comparative performance of conservation agriculture and current smallholder farming practices in semi-arid Zimbabwe. Field Crop Res 132:117–128

    Article  Google Scholar 

  • Botwright TL, Condon AG, Rebetzke GJ, Richards RA (2002) Field evaluation of early vigour for genetic improvement of grain yield in wheat. Aust J Agric Res 53:1137–1145

    Article  Google Scholar 

  • Botwright TL, Rebetzke GJ, Condon AG, Richards RA (2005) Influence of the gibberellin-sensitive Rht8 dwarfing gene on leaf epidermal cell dimensions and early vigour in wheat (Triticum aestivum L.). Ann Bot 95:631–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruce SE, Kirkegaard JA, Pratley J, Howe G (2006) Growth suppression of canola through wheat stubble I. separating physical and biochemical causes in the field. Plant Soil 281:203–218

    Article  CAS  Google Scholar 

  • Burnett V, Newton P, Coventry D (1997) Effect of seed source and seed phosphorus content on the growth and yield of wheat in north-eastern Victoria. Aust J Exp Agric 37:191–197

    Article  Google Scholar 

  • Chung SO, Sudduth KA, Motavalli PP, Kitchen NR (2013) Relating mobile sensor soil strength to penetrometer cone index. Soil Tillage Res 129:9–18

    Article  Google Scholar 

  • Collis-George N, Yoganathan P (1985) The effect of soil strength on germination and emergence of wheat (Triticum aestivum L.). I. low shear strength conditions. Soil Res 23:577–587

    Article  Google Scholar 

  • Daba S (1999) Note on effects of soil surface crust on the grain yield of sorghum (Sorghum bicolor) in the Sahel. Field Crop Res 61:193–199

    Article  Google Scholar 

  • Duiker SW, Haldeman JE, Johnson DH (2006) Tillage x maize hybrid interactions. Agron J 98:436–442

    Article  Google Scholar 

  • Eckstein K, Robinson JC, Fraser C (1996) Physiological responses of banana (Musa AAA; Cavendish sub-group) in the subtropics.5. influence of leaf tearing on assimilation potential and yield. J Hortic Sci 71:503–514

    Article  Google Scholar 

  • Eshel G, Lifschitz D, Bonfil DJ, Sternberg M (2014) Carbon exchange in rainfed wheat fields: effects of long-term tillage and fertilization under arid conditions. Agric Ecosyst Environ 195:112–119

    Article  Google Scholar 

  • Evers JB, Vos J, Fournier C, Andrieu B, Chelle M, Struik PC (2005) Towards a generic architectural model of tillering in Gramineae, as exemplified by spring wheat (Triticum aestivum). New Phytol 166:801–812

    Article  PubMed  Google Scholar 

  • Gan YT, Stobbe EH (1996) Seedling vigor and grain yield of ‘Roblin’ wheat affected by seed size. Agron J 88:456–460

    Article  Google Scholar 

  • Hamza MA, Anderson WK (2005) Soil compaction in cropping systems - a review of the nature, causes and possible solutions. Soil Tillage Res 82:121–145

    Article  Google Scholar 

  • Harrell DL, Blanche SB (2010) Tillage, seeding, and nitrogen rate effects on rice density, yield, and yield components of two rice cultivars. Agron J 102:592–597

    Article  Google Scholar 

  • Hlavackova V, Krchnak P, Naus J, Novak O, Spundova M, Strnad M (2006) Electrical and chemical signals involved in short-term systemic photosynthetic responses of tobacco plants to local burning. Planta 225:235–244

    Article  CAS  PubMed  Google Scholar 

  • Hou XQ, Li R, Jia ZK, Han QF (2013) Rotational tillage improves photosynthesis of winter wheat during reproductive growth stages in a Semiarid Region. Agron J 105:215–221

    Article  Google Scholar 

  • Karrou M, Maranville JW (1993) Seedling vigor and nitrogen use efficiency of Moroccan wheat as influenced by level of soil nitrogen. Commun Soil Sci Plant Anal 24:1153–1163

    Article  Google Scholar 

  • Kesavan M, Song JT, Seo HS (2013) Seed size: a priority trait in cereal crops. Physiol Plant 147:113–120

    Article  CAS  PubMed  Google Scholar 

  • Kirkegaard JA, Conyers MK, Hunt JR, Kirkby CA, Watt M, Rebetzke GJ (2014) Sense and nonsense in conservation agriculture: principles, pragmatism and productivity in Australian mixed farming systems. Agric Ecosyst Environ 187:133–145

    Article  Google Scholar 

  • Kitonyo O, Zhou Y, Sadras V, Denton M (2015) Evaluating the effects of tillage, stubble retention and nitrogen timing on dryland wheat. 9th International Wheat Conference 2015, Sydney, Australia

  • Kolp BJ, Miller DG, Pratt GA, Hwang SJ (1967) Relation of coleoptile structure to coleoptile strength and seedling emergence under compacted soil conditions in six varieties of winter wheat. Crop Sci 7:413–417

    Article  Google Scholar 

  • Liao MT, Fillery IRP, Palta JA (2004) Early vigorous growth is a major factor influencing nitrogen uptake in wheat. Funct Plant Biol 31:121–129

    Article  CAS  Google Scholar 

  • Llewellyn RS, D’Emden FH (2010) Adoption of no-till cropping practices in Aus-tralian grain growing regions. CSIRO Report for GRDC,. p. 32. SA No-till Farmers Association and CAAANZ

  • Lopezcastaneda C, Richards RA (1994) Variation in temperate cereals in rainfed environments III. water use and water-use efficiency. Field Crop Res 39:85–98

    Article  Google Scholar 

  • Mangalassery S, Sjogersten S, Sparkes DL, Sturrock CJ, Craigon J, Mooney SJ (2014) To what extent can zero tillage lead to a reduction in greenhouse gas emissions from temperate soils?. Scientific Reports 4

  • Maydup ML, Graciano C, Guiamet JJ, Tambussi EA (2012) Analysis of early vigour in twenty modern cultivars of bread wheat (Triticum aestivum L.). Crop Pasture Sci 63:987–996

    Article  Google Scholar 

  • McKnight T (1949) Efficiency of isolates of Rhizobium in the cowpea ( Vigna unguiculata) group, with proposed additions to this group. Queensland J Agric Sci 6:61–76

    Google Scholar 

  • Murchie EH, Lawson T (2013) Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot 64:3983–3998

    Article  CAS  PubMed  Google Scholar 

  • Mut Z, Akay H, Aydin N (2010) Effects of seed size and drought stress on germination and seedling growth of some oat genotypes (Avena sativa L.). Afr J Agric Res 5:1101–1107

    Google Scholar 

  • Newton AC, Guy DC, Bengough AG, Gordon DC, McKenzie BM, Sun B, Valentine TA, Hallett PD (2012) Soil tillage effects on the efficacy of cultivars and their mixtures in winter barley. Field Crop Res 128:91–100

    Article  Google Scholar 

  • Pang J, Palta JA, Rebetzke GJ, Milroy SP (2014) Wheat genotypes with high early vigour accumulate more nitrogen and have higher photosynthetic nitrogen use efficiency during early growth. Funct Plant Biol 41:215–222

    Article  CAS  Google Scholar 

  • Pappas T, Mitchell CA (1985) Influence of seismic stress on photosynthetic productivity, gas exchange, and leaf diffusive resistance of Glycine max (L.) Merrill cv Wells II. Plant Physiol 79:285–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pariasca-Tanaka J, Vandamme E, Mori A, Segda Z, Saito K, Rose TJ, Wissuwa M (2015) Does reducing seed-P concentrations affect seedling vigor and grain yield of rice? Plant Soil 392:253–266

    Article  CAS  Google Scholar 

  • Preuss CP, Huang CY, Louhaichi M, Ogbonnaya FC (2012) Genetic variation in the early vigour of spring bread wheat under phosphate stress as characterised through digital charting. Field Crop Res 127:71–78

    Article  Google Scholar 

  • Rebetzke GJ, Richards RA (2000) Gibberellic acid-sensitive dwarfing genes reduce plant height to increase kernel number and grain yield of wheat. Aust J Agric Res 51:235–245

    Article  CAS  Google Scholar 

  • Rebetzke GJ, Richards RA, Sirault XRR, Morrison AD (2004) Genetic analysis of coleoptile length and diameter in wheat. Aust J Agric Res 55:733–743

    Article  Google Scholar 

  • Rebetzke GJ, Bruce SE, Kirkegaard JA (2005) Longer coleoptiles improve emergence through crop residues to increase seedling number and biomass in wheat (Triticum aestivum L.). Plant Soil 272:87–100

    Article  CAS  Google Scholar 

  • Rebetzke GJ, Kirkegaard JA, Watt M, Richards RA (2014) Genetically vigorous wheat genotypes maintain superior early growth in no-till soils. Plant Soil 377:127–144

    Article  CAS  Google Scholar 

  • Royo C, Ramdani A, Moragues M, Villegas D (2006) Durum wheat under Mediterranean conditions as affected by seed size. J Agron Crop Sci 192:257–266

    Article  Google Scholar 

  • Sadras VO, Lawson C (2011) Genetic gain in yield and associated changes in phenotype, trait plasticity and competitive ability of South Australian wheat varieties released between 1958 and 2007. Crop Pasture Sci 62:533–549

    Article  Google Scholar 

  • Sadras VO, Lawson C (2013) Nitrogen and water-use efficiency of Australian wheat varieties released between 1958 and 2007. Eur J Agron 46:34–41

    Article  CAS  Google Scholar 

  • Sadras VO, Lawson C, Montoro A (2012) Photosynthetic traits in Australian wheat varieties released between 1958 and 2007. Field Crop Res 134:19–29

    Article  Google Scholar 

  • Sekiya N, Yano K (2010) Seed P-enrichment as an effective P supply to wheat. Plant Soil 327:347–354

    Article  CAS  Google Scholar 

  • Tardieu F, Zhang J, Katerji N, Bethenod O, Palmer S, Davies WJ (1992) Xylem ABA controls the stomatal conductance of field-grown maize subjected to soil compaction or soil drying. Plant Cell Environ 15:193–194

    Article  CAS  Google Scholar 

  • Townend J, Mtakwa PW, Mullins CE, Simmonds LP (1996) Soil physical factors limiting establishment of sorghum and cowpea in two contrasting soil types in the semi-arid tropics. Soil Tillage Res 40:89–106

    Article  Google Scholar 

  • Whalley WR, Finch-Savage WE, Cope RE, Rowse HR, Bird NRA (1999) The response of carrot (Daucus carota L.) and onion (Allium cepa L.) seedlings to mechanical impedance and water stress at sub-optimal temperatures. Plant Cell Environ 22:229–242

    Article  Google Scholar 

  • Whalley WR, Clark LJ, Finch-Savage WE, Cope RE (2004) The impact of mechanical impedance on the emergence of carrot and onion seedlings. Plant Soil 265:315–323

    Article  CAS  Google Scholar 

  • Yu LX, Ray JD, Otoole JC, Nguyen HT (1995) Use of wax-petrolatum layers for screening rice root penetration. Crop Sci 35:684–687

    Article  Google Scholar 

  • Zheng B, Chenu K, Fernanda Dreccer M, Chapman SC (2012) Breeding for the future: What are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivium) varieties? Glob Chang Biol 18:2899–2914

    Article  PubMed  Google Scholar 

  • Zhou Y, Lambrides C, Kearns R, Ye C, Cao N, Fukai S (2009) Selecting for drought tolerance among Australian green couch grasses (Cynodon spp.). Crop Pasture Sci 60:1175–1183

    Article  Google Scholar 

  • Zhou Y, Coventry DR, Denton MD (2016) A quantitative analysis of root distortion from contrasting wheat cropping systems. Plant Soil 404:173–192

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Australian Centre for International Agricultural Research, project (CIM/2008/027). We thank Danrui Wu, Samantha Muir and Nigel Charman at The University of Adelaide for help in maintaining the plants in growth chambers and collecting data. We thank Hans Lambers, The University of Western Australia, for providing helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew D. Denton.

Additional information

Responsible Editor: Peter J. Gregory .

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 3429 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Coventry, D.R. & Denton, M.D. Soil surface pressure reduces post-emergent shoot growth in wheat. Plant Soil 413, 127–144 (2017). https://doi.org/10.1007/s11104-016-3087-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-3087-7

Keywords

Navigation