Skip to main content
Log in

Plant production and nitrogen accumulation above- and belowground in low and tall birch tundra communities: the influence of snow and litter

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and Aim

A vegetation transition to taller and denser deciduous shrub tundra is currently occurring in many locations across the low Arctic, and is associated with climate change. Here, we investigated if deeper snow is a mechanism for enhanced shrub growth.

Methods

To determine if a moderate and climatically realistic increase in snow depth can enhance shrub productivity, we compared growth responses between ambient and experimentally deepened snow plots in low birch hummock tundra. To determine the potential influence of factors other than deepened snow that are associated with taller, denser shrubs, we also compared shrub growth between low birch hummock and tall birch-dominated tundra.

Results

Neither deciduous shrub above- nor belowground production nor nitrogen accumulation was enhanced by deepened snow. However, deciduous birch shrub new shoot production was 23× larger and total vascular shoot to belowground biomass ratios were higher in the tall birch tundra than the birch hummock (~0.7 and ~0.4, respectively), indicating that the combination of deeper snow together with other internal feedbacks greatly enhanced birch growth.

Conclusions

Together, our results strongly suggest that the much larger litter production in tall birch ecosystems is an important internal feedback that may or may not interact with deeper snow to promote birch growth in tall shrub tundra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • ACIA (2004) Impacts of a warming Arctic: Arctic climate impact assessment. Cambridge University Press, ACIA Overview report. Cambridge

    Google Scholar 

  • Beck PSA, Goetz SJ (2011) Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences. Environ Res Lett 6:045501

    Article  Google Scholar 

  • Blok D, Heijmans MMPD, Schaepman-Strub G, Kononov AV, Maximov TC, Berendse F (2010) Shrub expansion may reduce summer permafrost thaw in Siberian tundra. Glob Chang Biol 16:1296–1305

    Article  Google Scholar 

  • Bonfils CJW, Phillips TJ, Lawrence DM, Cameron-Smith P, Riley WJ, Subin ZM (2012) On the influence of shrub height and expansion on northern high latitude climate. Environ Res Lett 7:015503

    Article  Google Scholar 

  • Bret-Harte AMS, Shaver GR, Zoerner JP, Johnstone JF, Wagner JL, Chavez AS, Iv RFG, Lippert SC, James A (2002a) Developmental plasticity allows Betula Nana to dominate tundra subjected to an altered environment. Ecology 82:17–32

    Google Scholar 

  • Bret-Harte MS, Shaver GR, Chapin FS (2002b) Primary and secondary stem growth in arctic shrubs: implications for community response to environmental change. J Ecol 90:251–267

    Article  Google Scholar 

  • Buckeridge KM, Grogan P (2008) Deepened snow alters soil microbial nutrient limitations in arctic birch hummock tundra. Appl Soil Ecol 39:210–222

    Article  Google Scholar 

  • Buckeridge KM, Grogan P (2010) Deepened snow increases late thaw biogeochemical pulses in Mesic low arctic tundra. Biogeochemistry 101:105–121

    Article  Google Scholar 

  • Buckeridge KM, Zufelt E, Chu H, Grogan P (2009) Soil nitrogen cycling rates in low arctic shrub tundra are enhanced by litter feedbacks. Plant Soil 330:407–421

    Article  Google Scholar 

  • CAVM (2003) Circumpolar Arctic vegetation map. Pages Anchorage, Alaska U.S. Fish and Wildlife Service

    Google Scholar 

  • Chapin FS, Shaver GR (1996) Physiological and growth responses of Arctic plants to a field experiment simulating climatic change. Ecology 77:822–840

    Article  Google Scholar 

  • Chapin FSI, Fetcher N, Kielland K, Everett KR, Linkins AE (1988) Productivity and nutrient cycling of Alaskan tundra: enhancement by flowing soil water. Ecology 69:693–702

    Article  Google Scholar 

  • Chapin FSI, Shaver GR, Giblin AE, Nadelhoffer KJ, Laundre JA (1995) Responses of arctic tundra to experimental and observed changes in climate. Ecology 76:694–711

    Article  Google Scholar 

  • Chapin, F. S., M. Sturm, M. C. Serreze, J. P. McFadden, J. R. Key, A. H. Lloyd, A. D. McGuire, T. S. Rupp, A. H. Lynch, J. P. Schimel, J. Beringer, W. L. Chapman, H. E. Epstein, E. S. Euskirchen, L. D. Hinzman, G. Jia, C.-L. Ping, K. D. Tape, C. D. C. Thompson, D. A. Walker, and J. M. Welker. 2005. Role of land-surface changes in arctic summer warming. Science (New York, N.Y.) 310:657–60.

  • Chu H, Grogan P (2010) Soil microbial biomass, nutrient availability and nitrogen mineralization potential among vegetation-types in a low arctic tundra landscape. Plant Soil 329:411–420

    Article  CAS  Google Scholar 

  • DeMarco J, Mack MC, Bret-Harte MS (2011) The effects of snow, soil microenvironment, and soil organic matter quality on N availability in three Alaskan Arctic plant communities. Ecosystems 14:804–817

    Article  CAS  Google Scholar 

  • Dredge LA, Kerr DE, Wolfe SA (1999) Surficial materials and related ground ice conditions, Slave Province, N.W.T., Canada. Can J Earth Sci 36:1227–1238

    Article  Google Scholar 

  • Elmendorf SC, Henry GHR, Hollister RD, Björk RG, Bjorkman AD, Callaghan TV, Collier LS, Cooper EJ, Cornelissen JHC, Day TA, Fosaa AM, Gould WA, Grétarsdóttir J, Harte J, Hermanutz L, Hik DS, Hofgaard A, Jarrad F, Jónsdóttir IS, Keuper F, Klanderud K, Klein JA, Koh S, Kudo G, Lang SI, Loewen V, May JL, Mercado J, Michelsen A, Molau U, Myers-Smith IH, Oberbauer SF, Pieper S, Post E, Rixen C, Robinson CH, Schmidt NM, Shaver GR, Stenström A, Tolvanen A, Totland O, Troxler T, Wahren C-H, Webber PJ, Welker JM, Wookey PA (2012a) Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecol Lett 15:164–175

    Article  PubMed  Google Scholar 

  • Elmendorf SC, Henry GHR, Hollister RD, Björk RG, Boulanger-Lapointe N, Cooper EJ, Cornelissen JHC, Day TA, Dorrepaal E, Elumeeva TG, Gill M, Gould WA, Harte J, Hik DS, Hofgaard A, Johnson DR, Johnstone JF, Jónsdóttir IS, Jorgenson JC, Klanderud K, Klein JA, Koh S, Kudo G, Lara M, Lévesque E, Magnússon B, May JL, Mercado-Dı’az JA, Michelsen A, Molau U, Myers-Smith IH, Oberbauer SF, Onipchenko VG, Rixen C, Schmidt NM, Shaver GR, Spasojevic MJ, Þórhallsdóttir ÞE, Tolvanen A, Troxler T, Tweedie CE, Villareal S, Wahren C-H, Walker X, Webber PJ, Welker JM, Wipf S (2012b) Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat Clim Chang 2:453–457

    Article  Google Scholar 

  • Forbes BC, Fauria MM, Zetterberg P (2010) Russian Arctic warming and “greening” are closely tracked by tundra shrub willows. Glob Chang Biol 16:1542–1554

    Article  Google Scholar 

  • Goetz SJ, Bunn AG, Fiske GJ, Houghton RA (2005) Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proc Natl Acad Sci U S A 102:13521–13525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grogan P (2012) Cold season respiration across a low Arctic landscape: the influence of vegetation type, snow depth, and interannual climatic variation. Arct Antarct Alp Res 44:446–456

    Article  Google Scholar 

  • Jonasson S, Michelsen A, Schmidt IK, Nielsen EV (1999) Responses in microbes and plants to changed temperature, nutrient, and light regimes in the arctic. Ecology 80:1828–1843

    Article  Google Scholar 

  • Lafleur P, Humphreys E (2008) Spring warming and carbon dioxide exchange over low Arctic tundra in Central Canada. Glob Chang Biol 14:740–756

    Article  Google Scholar 

  • Loranty MM, Goetz SJ, Beck PSA (2011) Tundra vegetation effects on pan-Arctic albedo. Environ Res Lett 6:024014

    Article  Google Scholar 

  • Mack MC, Schuur EAG, Bret-Harte MS, Shaver GR, Chapin FS (2004) Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431:440–443

    Article  CAS  PubMed  Google Scholar 

  • McFadden JP, Chapin FS, Hollinger DY (1998) Subgrid-scale variability in the surface energy balance of arctic tundra. J Geophys Res 103:28947

    Article  CAS  Google Scholar 

  • Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T, Blok D, Tape KD, Macias-Fauria M, Sass-Klaassen U, Lévesque E, Boudreau S, Ropars P, Hermanutz L, Trant A, Collier LS, Weijers S, Rozema J, Rayback SA, Schmidt NM, Schaepman-Strub G, Wipf S, Rixen C, Ménard CB, Venn S, Goetz S, Andreu-Hayles L, Elmendorf S, Ravolainen V, Welker J, Grogan P, Epstein HE, Hik DS (2011) Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ Res Lett 6:045509

    Article  Google Scholar 

  • Nadelhoffer KJ, Giblin AE, Shaver GR, Laundre JA (1991) Effects of temperature and substrate quality on element mineralization in six arctic soils. Ecology 72:242–253

    Article  Google Scholar 

  • Natali SM, Schuur EAG, Rubin RL (2012) Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost. J Ecol 100:488–498

    Article  Google Scholar 

  • Nobrega S, Grogan P (2007) Deeper snow enhances winter respiration from both plant-associated and bulk soil carbon pools in birch hummock tundra. Ecosystems 10:419–431

    Article  CAS  Google Scholar 

  • Obst (2008) Classification of land cover, vegetation communities, ecosystems and habitats in east daring lake basin, northwest territories. Department of Environment and Natural Resources. Wildlife Division Government of the Northwest Territories, Yellowknife

    Google Scholar 

  • Odum EP (1969) The strategy of ecosystem development. Science 164:262–270

    Article  CAS  PubMed  Google Scholar 

  • Overpeck J (1997) Arctic environmental change of the last four centuries. Science 278:1251–1256

    Article  CAS  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press

  • Schimel JP, Bilbrough C, Welker JM (2004) Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities. Soil Biol Biochem 36:217–227

    Article  CAS  Google Scholar 

  • Shaver GR, Chapin FS (1980) Response to fertilization by various plant growth forms in an Alaskan tundra: nutrient accumulation and growth. Ecology 61:662–675

    Article  CAS  Google Scholar 

  • Shaver GR, Chapin FSI (1991) Production: biomass relationships and element cycling in contrasting Arctic vegetation types. Ecol Monogr 61:1–31

    Article  Google Scholar 

  • Shaver GR, Billings WD, Chapin FS, Giblin AE, Nadelhoffer KJ, Oechel WC, Rastetter EB (1992) Global change and the carbon balance of Arctic ecosystems. Bioscience:433–441

  • Sistla SA, Moore JC, Simpson RT, Gough L, Shaver GR, Schimel JP (2013) Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature 497:615–618

    Article  CAS  PubMed  Google Scholar 

  • Sturm M, Racine C, Tape K (2001) Climate change. Increasing shrub abundance in the Arctic Nature 411:546–547

    CAS  PubMed  Google Scholar 

  • Sturm M, Douglas T, Racine C, Liston GE (2005a) Changing snow and shrub conditions affect albedo with global implications. J Geophys Res 110

  • Sturm M, Schimel J, Michaelson G, Welker JM, Oberbauer SF, Liston GE, Fahnestock J, Romanovsky VE (2005b) Winter biological processes could help convert Arctic tundra to Shrubland. Bioscience 55:17–26

    Article  Google Scholar 

  • Tape K, Sturm M, Racine C (2006) The evidence for shrub expansion in northern Alaska and the pan-Arctic. Glob Chang Biol 12:686–702

    Article  Google Scholar 

  • Tape KD, Verbyla D, Welker JM (2011) Twentieth century erosion in Arctic Alaska foothills: the influence of shrubs, runoff, and permafrost. J Geophys Res 116:G04024

    Article  Google Scholar 

  • Tape KD, Hallinger M, Welker JM, Ruess RW (2012) Landscape heterogeneity of shrub expansion in Arctic Alaska. Ecosystems 15:711–724

    Article  CAS  Google Scholar 

  • Vankoughnett MR, Grogan P (2014) Nitrogen isotope tracer acquisition in low and tall birch tundra plant communities: a 2 year test of the snow–shrub hypothesis. Biogeochemistry 118:291–306

    Article  CAS  Google Scholar 

  • Wahren C-HA, Walker MD, Bret-Harte MS (2005) Vegetation responses in Alaskan arctic tundra after 8 years of a summer warming and winter snow manipulation experiment. Glob Chang Biol 11:537–552

    Article  Google Scholar 

  • Weintraub MN, Schimel JP (2003) Interactions between carbon and nitrogen mineralization and soil organic matter chemistry in Arctic tundra soils. Ecosystems 6:129–143

    Article  CAS  Google Scholar 

  • Xu L, Myneni RB, Chapin FS III, Callaghan TV, Pinzon JE, Tucker CJ, Zhu Z, Bi J, Ciais P, Tømmervik H, Euskirchen ES, Forbes BC, Piao SL, Anderson BT, Ganguly S, Nemani RR, Goetz SJ, Beck PSA, Bunn AG, Cao C, Stroeve JC (2013) Temperature and vegetation seasonality diminishment over northern lands. Nat Clim Chang 3:581–586

    Google Scholar 

  • Zamin TJ, Grogan P (2012) Birch shrub growth in the low Arctic: the relative importance of experimental warming, enhanced nutrient availability, snow depth and caribou exclusion. Environ Res Lett 7:034027

    Article  Google Scholar 

  • Zamin TJ, Grogan P (2013) Caribou exclusion during a population low increases deciduous and evergreen shrub species biomass and nitrogen pools in low Arctic tundra. J Ecol 101:671–683

    Article  CAS  Google Scholar 

  • Zamin TJ, Bret-Harte MS, Grogan P (2014) Evergreen shrubs dominate responses to experimental summer warming and fertilization in Canadian Mesic low arctic tundra. J Ecol 102:749–766

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Christy Barbeau, Linda Cameron, Tamara Hansen, Andy Kritsch, Meghan Laidlaw, Ian McCormick, Ryan Mercredi, and Tyanna Steinwand for their assistance in the field and laboratory. Shelley Arnott, Donie Bret-Harte, Kate Buckeridge, Ryan Danby, Melissa Lafrenière, Michelle Mack, and Tara Zamin provided thoughtful suggestions and insights. We are thankful for Steve Matthews’ logistical assistance and the support of the Division of Environment and Natural Resources, NWT Government. Natural Science and Engineering Research Council (P.G.), National Science Foundation (P.G.) and Northern Scientific Training Program (M.V.), provided funding for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathew R. Vankoughnett.

Additional information

Responsible Editor: Jeffrey Walck.

Electronic Supplementary Material

ESM 1

(DOC 1 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vankoughnett, M.R., Grogan, P. Plant production and nitrogen accumulation above- and belowground in low and tall birch tundra communities: the influence of snow and litter. Plant Soil 408, 195–210 (2016). https://doi.org/10.1007/s11104-016-2921-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-2921-2

Keywords

Navigation